Abstract:
The isomonodromy deformation method is applied to the scaling limits in the linear (N×N) matrix equations with rational coefficients to obtain the deformation equations for the algebraic curves that describe the local behavior of the reduced versions for the relevant isomonodromy deformation equations. The approach is illustrated by the study of the algebraic curve associated with the n-large asymptotics in the sequence of the biorthogonal polynomials with cubic potentials.
Citation:
A. A. Kapaev, “Monodromy Approach to the Scaling Limits in Isomonodromy Systems”, TMF, 137:3 (2003), 393–407; Theoret. and Math. Phys., 137:3 (2003), 1691–1702
\Bibitem{Kap03}
\by A.~A.~Kapaev
\paper Monodromy Approach to the Scaling Limits in Isomonodromy Systems
\jour TMF
\yr 2003
\vol 137
\issue 3
\pages 393--407
\mathnet{http://mi.mathnet.ru/tmf280}
\crossref{https://doi.org/10.4213/tmf280}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084149}
\zmath{https://zbmath.org/?q=an:1178.34112}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003TMP...137.1691K}
\elib{https://elibrary.ru/item.asp?id=13434766}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 3
\pages 1691--1702
\crossref{https://doi.org/10.1023/B:TAMP.0000007917.73394.24}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188329000006}
Linking options:
https://www.mathnet.ru/eng/tmf280
https://doi.org/10.4213/tmf280
https://www.mathnet.ru/eng/tmf/v137/i3/p393
This publication is cited in the following 6 articles:
Christian Klein, Nikola Stoilov, “Numerical Approach to Painlevé Transcendents on Unbounded Domains”, SIGMA, 14 (2018), 068, 10 pp.
Buckingham R.J., Miller P.D., “Large-Degree Asymptotics of Rational Painlevé-II Functions: Noncritical Behaviour”, Nonlinearity, 27:10 (2014), 2489–2577
Dubrovin B., Kapaev A., “On An Isomonodromy Deformation Equation Without the Painlevé Property”, Russ. J. Math. Phys., 21:1 (2014), 9–35
Masoero D., “Poles of integrale tritronquee and anharmonic oscillators. Asymptotic localization from WKB analysis”, Nonlinearity, 23:10 (2010), 2501–2507
Bertola, M, “Commuting difference operators, spinor bundles and the asymptotics of orthogonal polynomials with respect to varying complex weights”, Advances in Mathematics, 220:1 (2009), 154
Kapaev AA, “Quasi-linear Stokes phenomenon for the Painlevé first equation”, Journal of Physics A-Mathematical and General, 37:46 (2004), 11149–11167