Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 3, Pages 358–374
DOI: https://doi.org/10.4213/tmf278
(Mi tmf278)
 

This article is cited in 18 scientific papers (total in 18 papers)

Nonlinear Evolution ODEs Featuring Many Periodic Solutions

F. Calogeroab, J.-P. Françoisec

a INFN — National Institute of Nuclear Physics
b University of Rome "La Sapienza"
c Université Pierre & Marie Curie, Paris VI
References:
Abstract: We identify certain (classes of) single autonomous nonlinear evolution ODEs of arbitrarily high order that, by a simple explicit prescription, can be modified to generate a one-parameter family of deformed autonomous ODEs with the following properties: for all positive values of the deformation parameter $\omega$, these deformed ODEs have completely periodic solutions (with a fixed period $\widetilde T=R\pi/\omega$, where $R$ is an appropriate rational number) emerging–in the context of the initial-value problem–from open initial-data domains whose measure in the space of such initial data depends on the parameter $\omega$ but is generally positive (i.e., nonvanishing). Several examples are presented, including a one-parameter deformation of a well-known third-order ODE originally introduced by J. Chazy. We then discuss the deformation of the Chazy equation fully and find an explicit open semialgebraic set of periodic orbits.
Keywords: periodic solutions, nonlinear oscillators, Chazy equation.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 3, Pages 1663–1675
DOI: https://doi.org/10.1023/B:TAMP.0000007915.40771.85
Bibliographic databases:
Language: Russian
Citation: F. Calogero, J. Françoise, “Nonlinear Evolution ODEs Featuring Many Periodic Solutions”, TMF, 137:3 (2003), 358–374; Theoret. and Math. Phys., 137:3 (2003), 1663–1675
Citation in format AMSBIB
\Bibitem{CalFra03}
\by F.~Calogero, J.~Fran{\c c}oise
\paper Nonlinear Evolution ODEs Featuring Many Periodic Solutions
\jour TMF
\yr 2003
\vol 137
\issue 3
\pages 358--374
\mathnet{http://mi.mathnet.ru/tmf278}
\crossref{https://doi.org/10.4213/tmf278}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084147}
\zmath{https://zbmath.org/?q=an:1178.34044}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003TMP...137.1663C}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 3
\pages 1663--1675
\crossref{https://doi.org/10.1023/B:TAMP.0000007915.40771.85}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188329000004}
Linking options:
  • https://www.mathnet.ru/eng/tmf278
  • https://doi.org/10.4213/tmf278
  • https://www.mathnet.ru/eng/tmf/v137/i3/p358
  • This publication is cited in the following 18 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:375
    Full-text PDF :214
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024