Abstract:
It is shown that for m=1m=1, λ=(z1±z2)Rλ=(z1±z2)R the Coulomb spheroidal functions can be
expressed in terms of Whittaker functions. New partial solutions are constructed in the problem of two Coulomb centers.
Citation:
Yu. N. Demkov, I. V. Komarov, “Hypergeometric partial solutions in the problem of two Coulomb centers”, TMF, 38:2 (1979), 263–266; Theoret. and Math. Phys., 38:2 (1979), 174–176
\Bibitem{DemKom79}
\by Yu.~N.~Demkov, I.~V.~Komarov
\paper Hypergeometric partial solutions in the problem of two Coulomb centers
\jour TMF
\yr 1979
\vol 38
\issue 2
\pages 263--266
\mathnet{http://mi.mathnet.ru/tmf2764}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=528414}
\zmath{https://zbmath.org/?q=an:0399.33007|0414.33005}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 38
\issue 2
\pages 174--176
\crossref{https://doi.org/10.1007/BF01016839}
Linking options:
https://www.mathnet.ru/eng/tmf2764
https://www.mathnet.ru/eng/tmf/v38/i2/p263
This publication is cited in the following 6 articles:
Hakobyan T., Nersessian A., “Integrability of Calogero-Coulomb Problems”, Phys. Part. Nuclei Lett., 14:2 (2017), 331–335
Hakobyan T., Nersessian A., “Two-Center Coulomb Problem With Calogero Interaction”, Phys. Atom. Nuclei, 80:2 (2017), 383–388
Hakobyan T. Nersessian A., “Integrability and Separation of Variables in Calogero-Coulomb-Stark and Two-Center Calogero-Coulomb Systems”, Phys. Rev. D, 93:4 (2016), 045025
Tony C. Scott, Monique Aubert-Frécon, Johannes Grotendorst, “New approach for the electronic energies of the hydrogen molecular ion”, Chemical Physics, 324:2-3 (2006), 323
C. Grosche, “Coulomb Potentials by Path Integration”, Fortschr. Phys., 40:8 (1992), 695
V. P. Maslov, “Non-standard characteristics in asymptotic problems”, Russian Math. Surveys, 38:6 (1983), 1–42