Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 3, Pages 336–343
DOI: https://doi.org/10.4213/tmf276
(Mi tmf276)
 

This article is cited in 2 scientific papers (total in 2 papers)

Maximally Superintegrable Gaudin Magnet: A Unified Approach

Á. Ballesterosa, F. Mussob, O. Ragniscoc

a Universidad de Burgos
b International School for Advanced Studies (SISSA)
c Università degli Studi Roma Tre, Dipartimento di Fisica E. Amaldi
Full-text PDF (201 kB) Citations (2)
References:
Abstract: A classical integrable Hamiltonian system is defined by an Abelian subalgebra (of suitable dimension) of a Poisson algebra, while a quantum integrable Hamiltonian system is defined by an Abelian subalgebra (of suitable dimension) of a Jordan–Lie algebra of Hermitian operators. We propose a method for obtaining “large” Abelian subalgebras inside the tensor product of free tensor algebras, and we show that there exist canonical morphisms from these algebras to Poisson algebras and Jordan–Lie algebras of operators. We can thus prove the integrability of some particular Hamiltonian systems simultaneously at both the classical and the quantum level. We propose a particular case of the rational Gaudin magnet as an example.
Keywords: superintegrability, Gaudin magnet, coalgebras.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 3, Pages 1645–1651
DOI: https://doi.org/10.1023/B:TAMP.0000007913.22639.d3
Bibliographic databases:
Language: Russian
Citation: Á. Ballesteros, F. Musso, O. Ragnisco, “Maximally Superintegrable Gaudin Magnet: A Unified Approach”, TMF, 137:3 (2003), 336–343; Theoret. and Math. Phys., 137:3 (2003), 1645–1651
Citation in format AMSBIB
\Bibitem{BalMusRag03}
\by \'A.~Ballesteros, F.~Musso, O.~Ragnisco
\paper Maximally Superintegrable Gaudin Magnet: A Unified Approach
\jour TMF
\yr 2003
\vol 137
\issue 3
\pages 336--343
\mathnet{http://mi.mathnet.ru/tmf276}
\crossref{https://doi.org/10.4213/tmf276}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2084146}
\zmath{https://zbmath.org/?q=an:1178.82026}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2003TMP...137.1645B}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 3
\pages 1645--1651
\crossref{https://doi.org/10.1023/B:TAMP.0000007913.22639.d3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000188329000002}
Linking options:
  • https://www.mathnet.ru/eng/tmf276
  • https://doi.org/10.4213/tmf276
  • https://www.mathnet.ru/eng/tmf/v137/i3/p336
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:304
    Full-text PDF :182
    References:44
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024