Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 2, Pages 281–292
DOI: https://doi.org/10.4213/tmf272
(Mi tmf272)
 

This article is cited in 6 scientific papers (total in 6 papers)

The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bäcklund Transformation

C. Rogersa, W. K. Schief

a University of New South Wales
Full-text PDF (235 kB) Citations (6)
References:
Abstract: We establish that the kinematic constraints on the steady planar motion of an ideal fiber-reinforced fluid can be consolidated in a single third-order nonlinear equation. Remarkably, this equation admits a solitonic reduction related to the classical sine-Gordon equation. The kinematic conditions in this case admit a novel duality property and a Bäcklund transformation.
Keywords: kinematics, fiber-reinforced materials, Bäcklund transformation.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 2, Pages 1598–1608
DOI: https://doi.org/10.1023/A:1027374205344
Bibliographic databases:
Language: Russian
Citation: C. Rogers, W. K. Schief, “The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bäcklund Transformation”, TMF, 137:2 (2003), 281–292; Theoret. and Math. Phys., 137:2 (2003), 1598–1608
Citation in format AMSBIB
\Bibitem{RogSch03}
\by C.~Rogers, W.~K.~Schief
\paper The Kinematics of the Planar Motion of Ideal Fiber-Reinforced Fluids: An Integrable Reduction and Bäcklund Transformation
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 281--292
\mathnet{http://mi.mathnet.ru/tmf272}
\crossref{https://doi.org/10.4213/tmf272}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057904}
\zmath{https://zbmath.org/?q=an:1178.37089}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1598--1608
\crossref{https://doi.org/10.1023/A:1027374205344}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187431800012}
Linking options:
  • https://www.mathnet.ru/eng/tmf272
  • https://doi.org/10.4213/tmf272
  • https://www.mathnet.ru/eng/tmf/v137/i2/p281
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Òåîðåòè÷åñêàÿ è ìàòåìàòè÷åñêàÿ ôèçèêà Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:486
    Full-text PDF :193
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024