Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1972, Volume 10, Number 2, Pages 259–263 (Mi tmf2719)  

On the adiabatic change of a stationary state

Yu. S. Tyupkin, A. S. Schwarz
References:
Abstract: A condition is obtained for a uniform passage to the limit in the relation that expresses a stationary state of the Hamiltonian $H_g=H_0+gV$ in terms of a stationary state of the Hamiltonian $H_0$ and the Mfiller adiabatic matrix.
Received: 11.05.1971
English version:
Theoretical and Mathematical Physics, 1972, Volume 10, Issue 2, Pages 172–175
DOI: https://doi.org/10.1007/BF01090729
Language: Russian
Citation: Yu. S. Tyupkin, A. S. Schwarz, “On the adiabatic change of a stationary state”, TMF, 10:2 (1972), 259–263; Theoret. and Math. Phys., 10:2 (1972), 172–175
Citation in format AMSBIB
\Bibitem{TyuSch72}
\by Yu.~S.~Tyupkin, A.~S.~Schwarz
\paper On~the adiabatic change of a~stationary state
\jour TMF
\yr 1972
\vol 10
\issue 2
\pages 259--263
\mathnet{http://mi.mathnet.ru/tmf2719}
\transl
\jour Theoret. and Math. Phys.
\yr 1972
\vol 10
\issue 2
\pages 172--175
\crossref{https://doi.org/10.1007/BF01090729}
Linking options:
  • https://www.mathnet.ru/eng/tmf2719
  • https://www.mathnet.ru/eng/tmf/v10/i2/p259
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024