Abstract:
We introduce hypergeometric functions related to projective Schur functions Qλ and describe their properties. Linear equations, integral representations, and Pfaffian representations are obtained. These hypergeometric functions are vacuum expectations of free fermion fields and are therefore tau functions of the so-called BKP hierarchy of integrable equations.
Citation:
A. Yu. Orlov, “Hypergeometric Functions Related to Schur Q-Polynomials and the BKP Equation”, TMF, 137:2 (2003), 253–270; Theoret. and Math. Phys., 137:2 (2003), 1574–1589
\Bibitem{Orl03}
\by A.~Yu.~Orlov
\paper Hypergeometric Functions Related to Schur $Q$-Polynomials and the $B$KP Equation
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 253--270
\mathnet{http://mi.mathnet.ru/tmf270}
\crossref{https://doi.org/10.4213/tmf270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057902}
\zmath{https://zbmath.org/?q=an:1178.33015}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1574--1589
\crossref{https://doi.org/10.1023/A:1027370004436}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187431800010}
Linking options:
https://www.mathnet.ru/eng/tmf270
https://doi.org/10.4213/tmf270
https://www.mathnet.ru/eng/tmf/v137/i2/p253
This publication is cited in the following 34 articles:
Zhiyuan Wang, Chenglang Yang, Qingsheng Zhang, “BKP-affine coordinates and emergent geometry of generalized Brézin-Gross-Witten tau-functions”, Advances in Mathematics, 462 (2025), 110100
Denghui Li, Zhaowen Yan, “Polynomial tau-functions of the multi-component BKP and BUC hierarchies”, Journal of Geometry and Physics, 201 (2024), 105194
Gaëtan Borot, Raimar Wulkenhaar, “A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential”, SIGMA, 20 (2024), 050, 16 pp.
Xiaobo Liu, Chenglang Yang, “Schur Q-Polynomials and Kontsevich–Witten Tau Function”, Peking Math J, 7:2 (2024), 713
E. N. Antonov, A. Yu. Orlov, “A new solvable two-matrix model and the BKP tau function”, Theoret. and Math. Phys., 217:3 (2023), 1807–1820
Alexander Alexandrov, “Generalized Brézin–Gross–Witten tau-function as a hypergeometric solution of the BKP hierarchy”, Advances in Mathematics, 412 (2023), 108809
Yaroslav Drachov, Aleksandr Zhabin, “Genus expansion of matrix models and ℏ expansion of BKP hierarchy”, Eur. Phys. J. C, 83:5 (2023)
Alexander Alexandrov, Sergey Shadrin, “Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto–Kramer–Lewański conjecture”, Sel. Math. New Ser., 29:2 (2023)
Zhiyuan Wang, Chenglang Yang, “BKP hierarchy, affine coordinates, and a formula for connected bosonic n-point functions”, Lett Math Phys, 112:3 (2022)
A. Mironov, A. Morozov, A. Zhabin, “Spin Hurwitz theory and Miwa transform for the Schur Q-functions”, Physics Letters B, 829 (2022), 137131
Xiaobo Liu, Chenglang Yang, “Q-polynomial expansion for Brézin-Gross-Witten tau-function”, Advances in Mathematics, 404 (2022), 108456
A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227
Alexandrov A., “Intersection Numbers on (M)Over-Bar(G,N) and Bkp Hierarchy”, J. High Energy Phys., 2021, no. 9, 013
Mironov A. Morozov A. Zhabin A., “Connection Between Cut-and-Join and Casimir Operators”, Phys. Lett. B, 822 (2021), 136668
Mironov A.D. Morozov A. Natanzon S.M. Orlov A.Yu., “Around Spin Hurwitz Numbers”, Lett. Math. Phys., 111:5 (2021), 124
Li Ch., “Extensions on Two-Component Bkp and D Type Drinfeld-Sokolov Hierarchies”, Anal. Math. Phys., 11:2 (2021), 83
Harnad J., Orlov A.Yu., “Polynomial Kp and Bkp Tau-Functions and Correlators”, Ann. Henri Poincare, 22:9 (2021), 3025–3049
Mironov A. Morozov A., “Superintegrability of Kontsevich Matrix Model”, Eur. Phys. J. C, 81:3 (2021), 270
Harnad J., Orlov A.Yu., “Bilinear Expansions of Lattices of Kp <Bold>Tau</Bold>-Functions in Bkp <Bold>Tau</Bold>-Functions: a Fermionic Approach”, J. Math. Phys., 62:1 (2021), 013508
Mironov A.D., Morozov A., “Generalized Q-Functions For Gkm”, Phys. Lett. B, 819 (2021), 136474