Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 2, Pages 253–270
DOI: https://doi.org/10.4213/tmf270
(Mi tmf270)
 

This article is cited in 34 scientific papers (total in 34 papers)

Hypergeometric Functions Related to Schur Q-Polynomials and the BKP Equation

A. Yu. Orlov

P. P. Shirshov institute of Oceanology of RAS
References:
Abstract: We introduce hypergeometric functions related to projective Schur functions Qλ and describe their properties. Linear equations, integral representations, and Pfaffian representations are obtained. These hypergeometric functions are vacuum expectations of free fermion fields and are therefore tau functions of the so-called BKP hierarchy of integrable equations.
Keywords: projective Schur functions, hypergeometric functions, soliton theory.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 2, Pages 1574–1589
DOI: https://doi.org/10.1023/A:1027370004436
Bibliographic databases:
Language: Russian
Citation: A. Yu. Orlov, “Hypergeometric Functions Related to Schur Q-Polynomials and the BKP Equation”, TMF, 137:2 (2003), 253–270; Theoret. and Math. Phys., 137:2 (2003), 1574–1589
Citation in format AMSBIB
\Bibitem{Orl03}
\by A.~Yu.~Orlov
\paper Hypergeometric Functions Related to Schur $Q$-Polynomials and the $B$KP Equation
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 253--270
\mathnet{http://mi.mathnet.ru/tmf270}
\crossref{https://doi.org/10.4213/tmf270}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057902}
\zmath{https://zbmath.org/?q=an:1178.33015}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1574--1589
\crossref{https://doi.org/10.1023/A:1027370004436}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187431800010}
Linking options:
  • https://www.mathnet.ru/eng/tmf270
  • https://doi.org/10.4213/tmf270
  • https://www.mathnet.ru/eng/tmf/v137/i2/p253
  • This publication is cited in the following 34 articles:
    1. Zhiyuan Wang, Chenglang Yang, Qingsheng Zhang, “BKP-affine coordinates and emergent geometry of generalized Brézin-Gross-Witten tau-functions”, Advances in Mathematics, 462 (2025), 110100  crossref
    2. Denghui Li, Zhaowen Yan, “Polynomial tau-functions of the multi-component BKP and BUC hierarchies”, Journal of Geometry and Physics, 201 (2024), 105194  crossref
    3. Gaëtan Borot, Raimar Wulkenhaar, “A Note on BKP for the Kontsevich Matrix Model with Arbitrary Potential”, SIGMA, 20 (2024), 050, 16 pp.  mathnet  crossref
    4. Xiaobo Liu, Chenglang Yang, “Schur Q-Polynomials and Kontsevich–Witten Tau Function”, Peking Math J, 7:2 (2024), 713  crossref
    5. E. N. Antonov, A. Yu. Orlov, “A new solvable two-matrix model and the BKP tau function”, Theoret. and Math. Phys., 217:3 (2023), 1807–1820  mathnet  crossref  crossref  mathscinet  adsnasa
    6. Alexander Alexandrov, “Generalized Brézin–Gross–Witten tau-function as a hypergeometric solution of the BKP hierarchy”, Advances in Mathematics, 412 (2023), 108809  crossref
    7. Yaroslav Drachov, Aleksandr Zhabin, “Genus expansion of matrix models and expansion of BKP hierarchy”, Eur. Phys. J. C, 83:5 (2023)  crossref
    8. Alexander Alexandrov, Sergey Shadrin, “Elements of spin Hurwitz theory: closed algebraic formulas, blobbed topological recursion, and a proof of the Giacchetto–Kramer–Lewański conjecture”, Sel. Math. New Ser., 29:2 (2023)  crossref
    9. Zhiyuan Wang, Chenglang Yang, “BKP hierarchy, affine coordinates, and a formula for connected bosonic n-point functions”, Lett Math Phys, 112:3 (2022)  crossref
    10. A. Mironov, A. Morozov, A. Zhabin, “Spin Hurwitz theory and Miwa transform for the Schur Q-functions”, Physics Letters B, 829 (2022), 137131  crossref
    11. Xiaobo Liu, Chenglang Yang, “Q-polynomial expansion for Brézin-Gross-Witten tau-function”, Advances in Mathematics, 404 (2022), 108456  crossref
    12. A. Yu. Orlov, “Notes about the KP/BKP correspondence”, Theoret. and Math. Phys., 208:3 (2021), 1207–1227  mathnet  crossref  crossref  adsnasa  isi  elib
    13. Alexandrov A., “Intersection Numbers on (M)Over-Bar(G,N) and Bkp Hierarchy”, J. High Energy Phys., 2021, no. 9, 013  crossref  mathscinet  isi
    14. Mironov A. Morozov A. Zhabin A., “Connection Between Cut-and-Join and Casimir Operators”, Phys. Lett. B, 822 (2021), 136668  crossref  mathscinet  isi  scopus
    15. Mironov A.D. Morozov A. Natanzon S.M. Orlov A.Yu., “Around Spin Hurwitz Numbers”, Lett. Math. Phys., 111:5 (2021), 124  crossref  mathscinet  isi
    16. Li Ch., “Extensions on Two-Component Bkp and D Type Drinfeld-Sokolov Hierarchies”, Anal. Math. Phys., 11:2 (2021), 83  crossref  mathscinet  isi
    17. Harnad J., Orlov A.Yu., “Polynomial Kp and Bkp Tau-Functions and Correlators”, Ann. Henri Poincare, 22:9 (2021), 3025–3049  crossref  mathscinet  isi  scopus
    18. Mironov A. Morozov A., “Superintegrability of Kontsevich Matrix Model”, Eur. Phys. J. C, 81:3 (2021), 270  crossref  isi
    19. Harnad J., Orlov A.Yu., “Bilinear Expansions of Lattices of Kp <Bold>Tau</Bold>-Functions in Bkp <Bold>Tau</Bold>-Functions: a Fermionic Approach”, J. Math. Phys., 62:1 (2021), 013508  crossref  mathscinet  isi
    20. Mironov A.D., Morozov A., “Generalized Q-Functions For Gkm”, Phys. Lett. B, 819 (2021), 136474  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:458
    Full-text PDF :218
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025