Abstract:
General solution has been derived for the functional $c$-number equation which determines
all admissible realisations of yarious mechanics with associative (but not
necessary realisable by operators) law of multiplication of the observables. The general
solution includes the algebras of observables for the classical and for the quantum
mechanics. In addition, the solution includes one new algebra which corresponds formally
to purely imaginary value fo the Planck constant. The mathematical difficulties
of treating the new algebra are discussed.
\Bibitem{Shi77}
\by Yu.~M.~Shirokov
\paper On admissible forms of canonical mechanics
\jour TMF
\yr 1977
\vol 30
\issue 1
\pages 6--11
\mathnet{http://mi.mathnet.ru/tmf2687}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=441107}
\zmath{https://zbmath.org/?q=an:0399.70004|0436.70002}
\transl
\jour Theoret. and Math. Phys.
\yr 1977
\vol 30
\issue 1
\pages 3--6
\crossref{https://doi.org/10.1007/BF01029352}
Linking options:
https://www.mathnet.ru/eng/tmf2687
https://www.mathnet.ru/eng/tmf/v30/i1/p6
This publication is cited in the following 6 articles:
A. A. Magazev, A. S. Popov, I. V. Shirokov, “Constructing Invariant Differential Operators on Homogeneous Spaces Using the Star Product”, Russ Phys J, 64:10 (2022), 1783
G. K. Tolokonnikov, “On observable algebras of a class of associative mechanical systems”, Theoret. and Math. Phys., 63:2 (1985), 433–439
G. K. Tolokonnikov, “Algebras of observables of nearly canonical physical theories. I”, Theoret. and Math. Phys., 60:1 (1984), 690–693
G. K. Tolokonnikov, “Algebras of observables of nearly canonical physical theories. II”, Theoret. and Math. Phys., 61:2 (1984), 1072–1077
G. K. Tolokonnikov, “Hamiltonian algebras”, Theoret. and Math. Phys., 37:3 (1978), 1057–1065
G. K. Tolokonnikov, “Associative Hamiltonian algebras”, Theoret. and Math. Phys., 31:2 (1977), 441–445