Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 2, Pages 201–208
DOI: https://doi.org/10.4213/tmf265
(Mi tmf265)
 

This article is cited in 10 scientific papers (total in 10 papers)

Stretching and Shrinking of the Loop Soliton Interacting with a External Field

K. Konnoa, K. Kakuhatab

a Nihon University
b Toyama University
References:
Abstract: The integrable equation of motion of the loop soliton interacting with an external field is considered from the standpoint of stretching and/or shrinking of the loop. To study the role of the elastic force and the nonlinear forces, the basic equation is divided into three equations. We obtain stationary solutions for these equations and numerically solve their initial value problems to seek stability of the loop soliton.
Keywords: loop soliton, string, stretching, integrable equation, stability.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 2, Pages 1527–1533
DOI: https://doi.org/10.1023/A:1027309818548
Bibliographic databases:
Language: Russian
Citation: K. Konno, K. Kakuhata, “Stretching and Shrinking of the Loop Soliton Interacting with a External Field”, TMF, 137:2 (2003), 201–208; Theoret. and Math. Phys., 137:2 (2003), 1527–1533
Citation in format AMSBIB
\Bibitem{KonKak03}
\by K.~Konno, K.~Kakuhata
\paper Stretching and Shrinking of the Loop Soliton Interacting with a External Field
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 201--208
\mathnet{http://mi.mathnet.ru/tmf265}
\crossref{https://doi.org/10.4213/tmf265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057897}
\zmath{https://zbmath.org/?q=an:1178.35320}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1527--1533
\crossref{https://doi.org/10.1023/A:1027309818548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187431800005}
Linking options:
  • https://www.mathnet.ru/eng/tmf265
  • https://doi.org/10.4213/tmf265
  • https://www.mathnet.ru/eng/tmf/v137/i2/p201
  • This publication is cited in the following 10 articles:
    1. Abbagari S., Houwe A., Mukam S.P., Rezazadeh H., Inc M., Doka S.Y., Bouetou T.B., “Optical Solitons to the Nonlinear Schrodinger Equation in Metamaterials and Modulation Instability”, Eur. Phys. J. Plus, 136:7 (2021), 710  crossref  isi
    2. Yu G.-F., Zhang Y., “Integrable Discretization and Numerical Simulations of the Generalized Coupled Integrable Dispersionless Equations”, J. Differ. Equ. Appl., 25:3 (2019), 408–429  crossref  mathscinet  zmath  isi  scopus
    3. Kuetche V.K., “General Lax-Representation of a New Higher-Dimensional System: the Current-Fed Membrane”, Chaos Solitons Fractals, 59 (2014), 89–98  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    4. Souleymanou A., Kuetche V.K., Bouetou T.B., Kofane T.C., “Traveling Wave-Guide Channels of a New Coupled Integrable Dispersion less System”, Commun Theor Phys (Beijing), 57:1 (2012), 10–14  crossref  zmath  isi  scopus  scopus
    5. Wang Pan, Tian Bo, Liu Wen-Jun, Qu Qi-Xing, Jiang Yan, “Conservation Laws and Analytic Soliton Solutions for Coupled Integrable Dispersionless Equations with Symbolic Computation”, Commun Theor Phys (Beijing), 54:4 (2010), 687–696  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    6. Konno, K, “On Two Types of Localized Induction Equation”, Journal of the Physical Society of Japan, 77:11 (2008), 115003  crossref  adsnasa  isi  scopus  scopus
    7. Kuetche, VK, “On two-loop soliton solution of the Schafer-Wayne short-pulse equation using Hirota's method and Hodnett-Moloney approach”, Journal of the Physical Society of Japan, 76:2 (2007), 024004  crossref  adsnasa  isi  scopus  scopus
    8. Victor, KK, “Algebraic structure of a generalized coupled dispersionless system”, Journal of Physics A-Mathematical and General, 39:40 (2006), 12355  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    9. K. Konno, K. Kakuhata, “A New Type of Stretched Solutions Excited by Initially Stretched Vortex Filaments for the Local Induction Equation”, Theoret. and Math. Phys., 144:2 (2005), 1181–1189  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    10. Konno K, Kakuhata H, “A hierarchy for integrable equations of stretched vortex filament”, Journal of the Physical Society of Japan, 74:5 (2005), 1427–1430  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:342
    Full-text PDF :199
    References:50
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025