Abstract:
The integrable equation of motion of the loop soliton interacting with an external field is considered from the standpoint of stretching and/or shrinking of the loop. To study the role of the elastic force and the nonlinear forces, the basic equation is divided into three equations. We obtain stationary solutions for these equations and numerically solve their initial value problems to seek stability of the loop soliton.
Citation:
K. Konno, K. Kakuhata, “Stretching and Shrinking of the Loop Soliton Interacting with a External Field”, TMF, 137:2 (2003), 201–208; Theoret. and Math. Phys., 137:2 (2003), 1527–1533
\Bibitem{KonKak03}
\by K.~Konno, K.~Kakuhata
\paper Stretching and Shrinking of the Loop Soliton Interacting with a External Field
\jour TMF
\yr 2003
\vol 137
\issue 2
\pages 201--208
\mathnet{http://mi.mathnet.ru/tmf265}
\crossref{https://doi.org/10.4213/tmf265}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2057897}
\zmath{https://zbmath.org/?q=an:1178.35320}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 2
\pages 1527--1533
\crossref{https://doi.org/10.1023/A:1027309818548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000187431800005}
Linking options:
https://www.mathnet.ru/eng/tmf265
https://doi.org/10.4213/tmf265
https://www.mathnet.ru/eng/tmf/v137/i2/p201
This publication is cited in the following 10 articles:
Abbagari S., Houwe A., Mukam S.P., Rezazadeh H., Inc M., Doka S.Y., Bouetou T.B., “Optical Solitons to the Nonlinear Schrodinger Equation in Metamaterials and Modulation Instability”, Eur. Phys. J. Plus, 136:7 (2021), 710
Yu G.-F., Zhang Y., “Integrable Discretization and Numerical Simulations of the Generalized Coupled Integrable Dispersionless Equations”, J. Differ. Equ. Appl., 25:3 (2019), 408–429
Kuetche V.K., “General Lax-Representation of a New Higher-Dimensional System: the Current-Fed Membrane”, Chaos Solitons Fractals, 59 (2014), 89–98
Souleymanou A., Kuetche V.K., Bouetou T.B., Kofane T.C., “Traveling Wave-Guide Channels of a New Coupled Integrable Dispersion less System”, Commun Theor Phys (Beijing), 57:1 (2012), 10–14
Wang Pan, Tian Bo, Liu Wen-Jun, Qu Qi-Xing, Jiang Yan, “Conservation Laws and Analytic Soliton Solutions for Coupled Integrable Dispersionless Equations with Symbolic Computation”, Commun Theor Phys (Beijing), 54:4 (2010), 687–696
Konno, K, “On Two Types of Localized Induction Equation”, Journal of the Physical Society of Japan, 77:11 (2008), 115003
Kuetche, VK, “On two-loop soliton solution of the Schafer-Wayne short-pulse equation using Hirota's method and Hodnett-Moloney approach”, Journal of the Physical Society of Japan, 76:2 (2007), 024004
Victor, KK, “Algebraic structure of a generalized coupled dispersionless system”, Journal of Physics A-Mathematical and General, 39:40 (2006), 12355
K. Konno, K. Kakuhata, “A New Type of Stretched Solutions Excited by Initially Stretched Vortex Filaments for the Local Induction Equation”, Theoret. and Math. Phys., 144:2 (2005), 1181–1189
Konno K, Kakuhata H, “A hierarchy for integrable equations of stretched vortex filament”, Journal of the Physical Society of Japan, 74:5 (2005), 1427–1430