Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1982, Volume 53, Number 3, Pages 374–387 (Mi tmf2625)  

This article is cited in 6 scientific papers (total in 6 papers)

Quantization of symplectic manifolds with conical points

M. V. Karasev, V. P. Maslov
References:
Abstract: Quantization of a general nonlinear phase manifold $\mathfrak X$ in the quasicIassical approximation leads to the two-dimensional analog of the Bohr–Sommerfeld conditions, in which the form $pdq$ is replaced by $dp\Lambda dq$ and the vacuum energy $h/2$ by $h\nu/2$, where $\nu$ is the index of two-dimensional noncontractable cycles in $\mathfrak X$ . A study is made of smooth manifolds $\mathfrak X$ on which the index $\nu$ is integral and manifolds with conical singularities, on which $\nu$ can take half-integral values. Smooth functions $f$ on $\mathfrak X$ are associated with operators $\hat{f}$ that act on the sections of a ertain sheaf and locally have the form $\hat{f}=f(q,-ih\partial/\partial q)$, $h\to0$.
Received: 02.08.1982
English version:
Theoretical and Mathematical Physics, 1982, Volume 53, Issue 3, Pages 1186–1195
DOI: https://doi.org/10.1007/BF01027798
Bibliographic databases:
Language: Russian
Citation: M. V. Karasev, V. P. Maslov, “Quantization of symplectic manifolds with conical points”, TMF, 53:3 (1982), 374–387; Theoret. and Math. Phys., 53:3 (1982), 1186–1195
Citation in format AMSBIB
\Bibitem{KarMas82}
\by M.~V.~Karasev, V.~P.~Maslov
\paper Quantization of symplectic manifolds with conical points
\jour TMF
\yr 1982
\vol 53
\issue 3
\pages 374--387
\mathnet{http://mi.mathnet.ru/tmf2625}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=693609}
\zmath{https://zbmath.org/?q=an:0515.53032}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 53
\issue 3
\pages 1186--1195
\crossref{https://doi.org/10.1007/BF01027798}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982QZ66700005}
Linking options:
  • https://www.mathnet.ru/eng/tmf2625
  • https://www.mathnet.ru/eng/tmf/v53/i3/p374
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:634
    Full-text PDF :217
    References:93
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024