Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 39, Number 1, Pages 27–34 (Mi tmf2614)  

This article is cited in 8 scientific papers (total in 8 papers)

Geometrical approach to the dynamics of a relativistic string

B. M. Barbashov, A. L. Koshkarov
References:
Abstract: The problems of the classical dynamics of a relativistic string are intimately related to the theory of two-dimensional extremal surfaces in $n$-dimensional pseudo-Euclidean space $E^1_n$. In three-dimensional space-time $E^1_3$, it is possible to exploit fully the formalism of the Gaussian theory of two-dimensional surfaces, the surface being specified to within shifts by its first and second quadratic forms. Integration of the derivation formulas for the basic vectors $\partial x_\mu(\tau,\sigma)/\partial\tau=\dot x_\mu(\tau,\sigma)$, $\partial x_\mu(\tau,\sigma)/\partial\sigma=x_\mu'(\tau,\sigma)$ are the tangent vectors to the surface and $m_\mu(\tau,\sigma)$ is the normal to the surface at the given point $\tau,\sigma$) yields a representation for these vectors in a natural basis satisfying the orthonormal gauge $(\dot x_\mu\pm x'_\mu)^2=0$ and d'Alembert's equation $\ddot x_\mu(\tau,\sigma)-x''_\mu(\tau,\sigma)=0$ in the string dynamics. This representation can be generalized to a pseudo-Euclidean space $E^1_n$, of any dimension $n$. For a relativistic string in $E^1_n$ a representation is obtained that contains $n-2$ arbitrary functions and satisfies the gauge conditions, the equations of motion, and the boundary conditions for a free string.
Received: 14.04.1978
English version:
Theoretical and Mathematical Physics, 1979, Volume 39, Issue 1, Pages 300–305
DOI: https://doi.org/10.1007/BF01018940
Bibliographic databases:
Language: Russian
Citation: B. M. Barbashov, A. L. Koshkarov, “Geometrical approach to the dynamics of a relativistic string”, TMF, 39:1 (1979), 27–34; Theoret. and Math. Phys., 39:1 (1979), 300–305
Citation in format AMSBIB
\Bibitem{BarKos79}
\by B.~M.~Barbashov, A.~L.~Koshkarov
\paper Geometrical approach to the dynamics of a~relativistic string
\jour TMF
\yr 1979
\vol 39
\issue 1
\pages 27--34
\mathnet{http://mi.mathnet.ru/tmf2614}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=536466}
\zmath{https://zbmath.org/?q=an:0418.53002}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 39
\issue 1
\pages 300--305
\crossref{https://doi.org/10.1007/BF01018940}
Linking options:
  • https://www.mathnet.ru/eng/tmf2614
  • https://www.mathnet.ru/eng/tmf/v39/i1/p27
  • This publication is cited in the following 8 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:322
    Full-text PDF :116
    References:43
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024