Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1982, Volume 53, Number 1, Pages 93–107 (Mi tmf2611)  

This article is cited in 15 scientific papers (total in 15 papers)

Statistical thermodynammics of turbulent transport processes

D. N. Zubarev
References:
Abstract: The method of nonequilibrium statistical thermodynamics is applied to the theory of transport processes in a liquid in the presence of strong fluctuations. The distribution functional of the densities of the momentum, energy, and particle number satisfies a Fokker–Planck equation and determines the entropy of a state with strong fluctuations. This makes it possible to obtain not only a hierarchy of Reynolds equations but also an entropy production that gives expression to the second law of thermodynamics.
Received: 31.03.1982
English version:
Theoretical and Mathematical Physics, 1982, Volume 53, Issue 1, Pages 1004–1014
DOI: https://doi.org/10.1007/BF01014797
Bibliographic databases:
Language: Russian
Citation: D. N. Zubarev, “Statistical thermodynammics of turbulent transport processes”, TMF, 53:1 (1982), 93–107; Theoret. and Math. Phys., 53:1 (1982), 1004–1014
Citation in format AMSBIB
\Bibitem{Zub82}
\by D.~N.~Zubarev
\paper Statistical thermodynammics of turbulent transport processes
\jour TMF
\yr 1982
\vol 53
\issue 1
\pages 93--107
\mathnet{http://mi.mathnet.ru/tmf2611}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=693601}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 53
\issue 1
\pages 1004--1014
\crossref{https://doi.org/10.1007/BF01014797}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982QP68400010}
Linking options:
  • https://www.mathnet.ru/eng/tmf2611
  • https://www.mathnet.ru/eng/tmf/v53/i1/p93
  • This publication is cited in the following 15 articles:
    1. M. V. Tokarchuk, “To the kinetic theory of dense gases and liquids. Calculation of quasi-equilibrium particle distribution functions by the method of collective variables”, Math. Model. Comput., 9:2 (2022), 440  crossref
    2. I.R. Yukhnovskii, M.V. Tokarchuk, P.A. Hlushak, “Metod kolektivnikh zmіnnikh v teorіï nelіnіinikh fluktuatsіi z urakhuvannyam kіnetichnikh protsesіv”, Ukr. J. Phys., 67:8 (2022), 579  crossref
    3. M. V. Tokarchuk, “Kinetic description of ion transport in the system “ionic solution – porous environment””, Math. Model. Comput., 9:3 (2022), 719  crossref
    4. P. A. Glushak, B. B. Markiv, M. V. Tokarchuk, “Zubarev's nonequilibrium statistical operator method in the generalized statistics of multiparticle systems”, Theoret. and Math. Phys., 194:1 (2018), 57–73  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Hlushak P. Tokarchuk M., “Chain of Kinetic Equations For the Distribution Functions of Particles in Simple Liquid Taking Into Account Nonlinear Hydrodynamic Fluctuations”, Physica A, 443 (2016), 231–245  crossref  isi
    6. Yukhnovskii I.R. Hlushak P.A. Tokarchuk M.V., “BBGKY chain of kinetic equations, non-equilibrium statistical operator method and collective variable method in the statistical theory of non-equilibrium liquids”, Condens. Matter Phys., 19:4 (2016), 43705  crossref  isi  elib  scopus
    7. A.S. Makarenko, “Model Equations and Formation of Structures in Media with Memory”, Ukr. J. Phys., 57:4 (2012), 408  crossref
    8. Markiv B., Omelyan I., Tokarchuk M., “Relaxation to the state of molecular hydrodynamics in the generalized hydrodynamics of liquids”, Phys Rev E, 82:4, Part 1 (2010), 041202  crossref  isi
    9. A. L. KUZEMSKY, “THEORY OF TRANSPORT PROCESSES AND THE METHOD OF THE NONEQUILIBRIUM STATISTICAL OPERATOR”, Int. J. Mod. Phys. B, 21:17 (2007), 2821  crossref
    10. V. V. Ignatiuk, M. V. Tokarchuk, “Statistical theory of nonlinear hydrodynamic fluctuations of ion systems”, Theoret. and Math. Phys., 108:3 (1996), 1208–1221  mathnet  crossref  crossref  mathscinet  zmath  isi
    11. Roberto Luzzi, Aurea R. Vasconcellos, “On the Nonequilibrium Statistical Operator Method”, Fortschr. Phys., 38:11 (1990), 887  crossref
    12. G. I. Bigun, “Quantum statistical theory of spatially inhomogeneous Coulomb systems”, Theoret. and Math. Phys., 62:3 (1985), 299–308  mathnet  crossref  isi
    13. R. Der, “On the retarded solution of the Liouville equation and the definition of entropy in kinetic theory”, Physica A: Statistical Mechanics and its Applications, 132:1 (1985), 74  crossref
    14. V. G. Morozov, “Functional integrals for generalized Fokker-Planck equation”, Theoret. and Math. Phys., 58:1 (1984), 52–63  mathnet  crossref  mathscinet  isi
    15. D.N. Zubarev, V.G. Morozov, “Statistical mechanics of nonlinear hydrodynamic fluctuations”, Physica A: Statistical Mechanics and its Applications, 120:3 (1983), 411  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:483
    Full-text PDF :178
    References:62
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025