|
This article is cited in 6 scientific papers (total in 6 papers)
Effective $su_q(2)$ Models and Polynomial Algebras for Fermion-Boson Hamiltonians
Á. Ballesterosa, O. Civitareseb, F. J. Herranza, M. Reboirob a Universidad de Burgos
b Universidad Nacional de La Plata
Abstract:
We show that schematic $su(2)\oplus h_3$ interaction Hamiltonians, where $su(2)$ plays the role of the pseudospin algebra of fermion operators and $h_3$ is the Heisenberg algebra for bosons, are closely related to certain nonlinear models defined on a single quantum algebra $su_q(2)$ of quasifermions. In particular, $su_q(2)$ analogues of the Da Providencia–Schütte and extended Lipkin models are presented. We analyze the connection between $q$ and the physical parameters of the fermion-boson system and, using polynomial algebras, discuss the integrability properties of the interaction Hamiltonians.
Keywords:
quantum algebras, effective Hamiltonians, dynamical symmetry, nuclear physics.
Citation:
Á. Ballesteros, O. Civitarese, F. J. Herranz, M. Reboiro, “Effective $su_q(2)$ Models and Polynomial Algebras for Fermion-Boson Hamiltonians”, TMF, 137:2 (2003), 165–175; Theoret. and Math. Phys., 137:2 (2003), 1495–11504
Linking options:
https://www.mathnet.ru/eng/tmf261https://doi.org/10.4213/tmf261 https://www.mathnet.ru/eng/tmf/v137/i2/p165
|
Statistics & downloads: |
Abstract page: | 300 | Full-text PDF : | 165 | References: | 41 | First page: | 1 |
|