Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 38, Number 1, Pages 58–70 (Mi tmf2554)  

This article is cited in 5 scientific papers (total in 5 papers)

Self-adjoint phase operator

A. L. Alimov, E. V. Damaskinsky
References:
Abstract: Quantization of action-angle variables is discussed. A self-adjoint phase operator is constructed for the harmonic oscillator, and some of its properties are investigated. The relative phase operator for two independent oscillators is described. Examples of a self-adjoint phase operator are given for reducible Weyl systems.
Received: 28.12.1977
English version:
Theoretical and Mathematical Physics, 1979, Volume 38, Issue 1, Pages 39–47
DOI: https://doi.org/10.1007/BF01030256
Bibliographic databases:
Language: Russian
Citation: A. L. Alimov, E. V. Damaskinsky, “Self-adjoint phase operator”, TMF, 38:1 (1979), 58–70; Theoret. and Math. Phys., 38:1 (1979), 39–47
Citation in format AMSBIB
\Bibitem{AliDam79}
\by A.~L.~Alimov, E.~V.~Damaskinsky
\paper Self-adjoint phase operator
\jour TMF
\yr 1979
\vol 38
\issue 1
\pages 58--70
\mathnet{http://mi.mathnet.ru/tmf2554}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525850}
\zmath{https://zbmath.org/?q=an:0463.47025}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 38
\issue 1
\pages 39--47
\crossref{https://doi.org/10.1007/BF01030256}
Linking options:
  • https://www.mathnet.ru/eng/tmf2554
  • https://www.mathnet.ru/eng/tmf/v38/i1/p58
  • This publication is cited in the following 5 articles:
    1. Fresneda R., Gazeau J.P., Noguera D., “Quantum Localisation on the Circle”, J. Math. Phys., 59:5 (2018), 052105  crossref  isi
    2. V.N. Popov, V.S. Yarunin, “Quantum and Quasi-classical States of the Photon Phase Operator”, Journal of Modern Optics, 39:7 (1992), 1525  crossref
    3. V. N. Popov, V. S. Yarunin, “Photon phase operator”, Theoret. and Math. Phys., 89:3 (1991), 1292–1297  mathnet  crossref  mathscinet  isi
    4. E. V. Damaskinsky, P. P. Kulish, “Deformed oscillators and their applications”, J. Soviet Math., 62:5 (1992), 2963–2986  mathnet  mathnet  crossref
    5. E. V. Damaskinskii, “Spontaneous violation of phase and Galilean transformations in Weyl systems”, J Math Sci, 35:4 (1986), 2606  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :222
    References:59
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025