Abstract:
Derivation of the kinetic equation proposed in the paper [1] is generalised and methods of studying the electron-phonon system and excluding phonon operators
from corresponding kinetic equation are formulated. In particular, the polaron kinetic equation is obtained for the interaction of the electron with the phonon field. If a certain approximation is made in this equation, it implies, for instance, the exact Boltzmann equation for the polaron.
Citation:
N. N. Bogolyubov, N. N. Bogolyubov (Jr.), “Generalized kinetic equation for a dynamical system interacting with a phonon field”, TMF, 43:1 (1980), 3–17; Theoret. and Math. Phys., 43:1 (1980), 283–292
\Bibitem{BogBog80}
\by N.~N.~Bogolyubov, N.~N.~Bogolyubov (Jr.)
\paper Generalized kinetic equation for a~dynamical system interacting with a~phonon field
\jour TMF
\yr 1980
\vol 43
\issue 1
\pages 3--17
\mathnet{http://mi.mathnet.ru/tmf2550}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=570937}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 43
\issue 1
\pages 283--292
\crossref{https://doi.org/10.1007/BF01018458}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KR23100001}
Linking options:
https://www.mathnet.ru/eng/tmf2550
https://www.mathnet.ru/eng/tmf/v43/i1/p3
This publication is cited in the following 4 articles:
G. F. Efremov, V. V. Sharkov, “Quantum statistical theory of radiation friction of a relativistic electron”, Theoret. and Math. Phys., 158:3 (2009), 406–421
N. N. Bogolyubov (Jr.), D. P. Sankovich, “N. N. Bogolyubov and statistical mechanics”, Russian Math. Surveys, 49:5 (1994), 19–49
F.M. Peeters, J.T. Devreese, Solid State Physics, 38, 1984, 81
G. O. Balabanyan, “Some questions in polaron theory”, Theoret. and Math. Phys., 50:2 (1982), 196–200