Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 137, Number 1, Pages 153–160
DOI: https://doi.org/10.4213/tmf255
(Mi tmf255)
 

This article is cited in 1 scientific paper (total in 1 paper)

Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One

A. Yu. Kokotov, D. A. Korotkin, V. Shramchenko

Concordia University, Department of Mathematics and Statistics
Full-text PDF (198 kB) Citations (1)
References:
Abstract: Briefly outlining our recent work, we construct a family of nonautonomous integrable systems (deformations of the principal chiral model) in connection with the Hurwitz spaces of meromorphic functions on the Riemann sphere, cylinder, and torus. We give differential equations describing the dependence of the critical points of the rational, elliptic, and trigonometric functions on the critical values. We outline a relation to the deformation framework of Burtzev–Mikhailov–Zakharov.
Keywords: Hurwitz spaces, deformations of integrable systems.
English version:
Theoretical and Mathematical Physics, 2003, Volume 137, Issue 1, Pages 1485–1491
DOI: https://doi.org/10.1023/A:1026017109499
Bibliographic databases:
Language: Russian
Citation: A. Yu. Kokotov, D. A. Korotkin, V. Shramchenko, “Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One”, TMF, 137:1 (2003), 153–160; Theoret. and Math. Phys., 137:1 (2003), 1485–1491
Citation in format AMSBIB
\Bibitem{KokKorShr03}
\by A.~Yu.~Kokotov, D.~A.~Korotkin, V.~Shramchenko
\paper Nonautonomous Integrable Systems Associated with Hurwitz Spaces in Genuses Zero and One
\jour TMF
\yr 2003
\vol 137
\issue 1
\pages 153--160
\mathnet{http://mi.mathnet.ru/tmf255}
\crossref{https://doi.org/10.4213/tmf255}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2048098}
\zmath{https://zbmath.org/?q=an:1178.37101}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 137
\issue 1
\pages 1485--1491
\crossref{https://doi.org/10.1023/A:1026017109499}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000186557700015}
Linking options:
  • https://www.mathnet.ru/eng/tmf255
  • https://doi.org/10.4213/tmf255
  • https://www.mathnet.ru/eng/tmf/v137/i1/p153
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :200
    References:55
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024