Abstract:
The problem of choosing the conditions that fix the gauge in the formalism of a path integral over phase space is discussed. It is suggested that one should use conditions which include both the vector potential $A$ and its canonically conjugate variable $E$. Conditions are found that make it possible to solve explicitly the constraint and formulate the theory solely in terms of physical degrees of freedom.
Citation:
A. G. Izergin, V. E. Korepin, M. A. Semenov-Tian-Shansky, L. D. Faddeev, “Gauge conditions for the Yang–Mills field”, TMF, 38:1 (1979), 3–14; Theoret. and Math. Phys., 38:1 (1979), 1–9
\Bibitem{IzeKorSem79}
\by A.~G.~Izergin, V.~E.~Korepin, M.~A.~Semenov-Tian-Shansky, L.~D.~Faddeev
\paper Gauge conditions for the Yang--Mills field
\jour TMF
\yr 1979
\vol 38
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/tmf2529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525846}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 38
\issue 1
\pages 1--9
\crossref{https://doi.org/10.1007/BF01030251}
Linking options:
https://www.mathnet.ru/eng/tmf2529
https://www.mathnet.ru/eng/tmf/v38/i1/p3
This publication is cited in the following 41 articles:
Zi‐Hua Weng, “Gauge fields and four interactions in the trigintaduonion spaces”, Math Methods in App Sciences, 2024
S. N. Storchak, “The Poincaré variational principle in the Lagrange–Poincaré reduction of mechanical systems with symmetry”, Int. J. Geom. Methods Mod. Phys., 16:05 (2019), 1950068
A. M. Khvedelidze, “Hamiltonian reduction of SU(2) gluodynamics”, Phys. Part. Nuclei, 42:3 (2011), 414
Manu Mathur, “Harmonic oscillator pre-potentials inSU(2) lattice gauge theory”, J. Phys. A: Math. Gen., 38:46 (2005), 10015
Antti Salmela, “Function group approach to unconstrained Hamiltonian Yang–Mills theory”, Journal of Mathematical Physics, 46:10 (2005)
Khvedelidze, AM, “Unconstrained SU(2) Yang-Mills theory with a topological term in the long-wavelength approximation”, Physical Review D, 67:10 (2003), 105013
Antti Salmela, “An algebraic method for solving the SU(3) Gauss law”, Journal of Mathematical Physics, 44:6 (2003), 2521
Sergei V. Shabanov, “Geometry of the physical phase space in quantum gauge systems”, Physics Reports, 326:1-3 (2000), 1
A. M. Khvedelidze, H.-P. Pavel, “Unconstrained Hamiltonian formulation ofSU(2)gluodynamics”, Phys. Rev. D, 59:10 (1999)
A. M. Khvedelidze, H.-P. Pavel, G. Röpke, “Unconstrained SU(2) Yang-Mills quantum mechanics with the theta angle”, Phys. Rev. D, 61:2 (1999)
Norbert Düchting, Sergei V. Shabanov, Thomas Strobl, “BRST inner product spaces and the Gribov obstruction”, Nuclear Physics B, 538:1-2 (1999), 485
S. A. Gogilidze, A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, “Hamiltonian reduction ofSU(2)Dirac-Yang-Mills mechanics”, Phys. Rev. D, 57:12 (1998), 7488
Pushan Majumdar, H. S. Sharatchandra, “General solution of the non-Abelian Gauss law and non-Abelian analogues of the Hodge decomposition”, Phys. Rev. D, 58:6 (1998)
H. Reinhardt, “Resolution of Gauss' law in Yang-Mills theory by gauge-invariant projection: Topology and magnetic monopoles”, Nuclear Physics B, 503:1-2 (1997), 505
H. Reinhardt, “Yang-Mills theory in a modified axial gauge”, Phys. Rev. D, 55:4 (1997), 2331
G. A. Chechelashvili, G. P. Jorjadze, N. A. Kiknadze, “Practical scheme of reduction to gauge-invariant variables”, Theoret. and Math. Phys., 109:1 (1996), 1316–1328
S. A. Gogilidze, A. M. Khvedelidze, V. N. Pervushin, “Admissible gauges for constrained systems”, Phys. Rev. D, 53:4 (1996), 2160
Yu. S. Osipov, A. A. Gonchar, S. P. Novikov, V. I. Arnol'd, G. I. Marchuk, P. P. Kulish, V. S. Vladimirov, E. F. Mishchenko, “Lyudvig Dmitrievich Faddeev (on his sixtieth birthday)”, Russian Math. Surveys, 50:3 (1995), 643–659
Peter E. Haagensen, Kenneth Johnson, “Yang-Mills fields and Riemannian geometry”, Nuclear Physics B, 439:3 (1995), 597