Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1979, Volume 38, Number 1, Pages 3–14 (Mi tmf2529)  

This article is cited in 40 scientific papers (total in 41 papers)

Gauge conditions for the Yang–Mills field

A. G. Izergin, V. E. Korepin, M. A. Semenov-Tian-Shansky, L. D. Faddeev
References:
Abstract: The problem of choosing the conditions that fix the gauge in the formalism of a path integral over phase space is discussed. It is suggested that one should use conditions which include both the vector potential $A$ and its canonically conjugate variable $E$. Conditions are found that make it possible to solve explicitly the constraint and formulate the theory solely in terms of physical degrees of freedom.
Received: 29.06.1978
English version:
Theoretical and Mathematical Physics, 1979, Volume 38, Issue 1, Pages 1–9
DOI: https://doi.org/10.1007/BF01030251
Bibliographic databases:
Language: Russian
Citation: A. G. Izergin, V. E. Korepin, M. A. Semenov-Tian-Shansky, L. D. Faddeev, “Gauge conditions for the Yang–Mills field”, TMF, 38:1 (1979), 3–14; Theoret. and Math. Phys., 38:1 (1979), 1–9
Citation in format AMSBIB
\Bibitem{IzeKorSem79}
\by A.~G.~Izergin, V.~E.~Korepin, M.~A.~Semenov-Tian-Shansky, L.~D.~Faddeev
\paper Gauge conditions for the Yang--Mills field
\jour TMF
\yr 1979
\vol 38
\issue 1
\pages 3--14
\mathnet{http://mi.mathnet.ru/tmf2529}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=525846}
\transl
\jour Theoret. and Math. Phys.
\yr 1979
\vol 38
\issue 1
\pages 1--9
\crossref{https://doi.org/10.1007/BF01030251}
Linking options:
  • https://www.mathnet.ru/eng/tmf2529
  • https://www.mathnet.ru/eng/tmf/v38/i1/p3
  • This publication is cited in the following 41 articles:
    1. Zi‐Hua Weng, “Gauge fields and four interactions in the trigintaduonion spaces”, Math Methods in App Sciences, 2024  crossref
    2. S. N. Storchak, “The Poincaré variational principle in the Lagrange–Poincaré reduction of mechanical systems with symmetry”, Int. J. Geom. Methods Mod. Phys., 16:05 (2019), 1950068  crossref
    3. A. M. Khvedelidze, “Hamiltonian reduction of SU(2) gluodynamics”, Phys. Part. Nuclei, 42:3 (2011), 414  crossref
    4. Manu Mathur, “Harmonic oscillator pre-potentials inSU(2) lattice gauge theory”, J. Phys. A: Math. Gen., 38:46 (2005), 10015  crossref
    5. Antti Salmela, “Function group approach to unconstrained Hamiltonian Yang–Mills theory”, Journal of Mathematical Physics, 46:10 (2005)  crossref
    6. Khvedelidze, AM, “Unconstrained SU(2) Yang-Mills theory with a topological term in the long-wavelength approximation”, Physical Review D, 67:10 (2003), 105013  crossref  isi
    7. Antti Salmela, “An algebraic method for solving the SU(3) Gauss law”, Journal of Mathematical Physics, 44:6 (2003), 2521  crossref
    8. Sergei V. Shabanov, “Geometry of the physical phase space in quantum gauge systems”, Physics Reports, 326:1-3 (2000), 1  crossref
    9. A. M. Khvedelidze, H.-P. Pavel, “Unconstrained Hamiltonian formulation ofSU(2)gluodynamics”, Phys. Rev. D, 59:10 (1999)  crossref
    10. A. M. Khvedelidze, H.-P. Pavel, G. Röpke, “Unconstrained SU(2) Yang-Mills quantum mechanics with the theta angle”, Phys. Rev. D, 61:2 (1999)  crossref
    11. Norbert Düchting, Sergei V. Shabanov, Thomas Strobl, “BRST inner product spaces and the Gribov obstruction”, Nuclear Physics B, 538:1-2 (1999), 485  crossref
    12. S. A. Gogilidze, A. M. Khvedelidze, D. M. Mladenov, H.-P. Pavel, “Hamiltonian reduction ofSU(2)Dirac-Yang-Mills mechanics”, Phys. Rev. D, 57:12 (1998), 7488  crossref
    13. Pushan Majumdar, H. S. Sharatchandra, “General solution of the non-Abelian Gauss law and non-Abelian analogues of the Hodge decomposition”, Phys. Rev. D, 58:6 (1998)  crossref
    14. H. Reinhardt, “Resolution of Gauss' law in Yang-Mills theory by gauge-invariant projection: Topology and magnetic monopoles”, Nuclear Physics B, 503:1-2 (1997), 505  crossref
    15. H. Reinhardt, “Yang-Mills theory in a modified axial gauge”, Phys. Rev. D, 55:4 (1997), 2331  crossref
    16. G. A. Chechelashvili, G. P. Jorjadze, N. A. Kiknadze, “Practical scheme of reduction to gauge-invariant variables”, Theoret. and Math. Phys., 109:1 (1996), 1316–1328  mathnet  crossref  crossref  mathscinet  zmath  isi
    17. S. A. Gogilidze, A. M. Khvedelidze, V. N. Pervushin, “Admissible gauges for constrained systems”, Phys. Rev. D, 53:4 (1996), 2160  crossref
    18. E. Abdalla, M.C.B. Abdalla, “Updating QCD2”, Physics Reports, 265:4-5 (1996), 253  crossref
    19. Yu. S. Osipov, A. A. Gonchar, S. P. Novikov, V. I. Arnol'd, G. I. Marchuk, P. P. Kulish, V. S. Vladimirov, E. F. Mishchenko, “Lyudvig Dmitrievich Faddeev (on his sixtieth birthday)”, Russian Math. Surveys, 50:3 (1995), 643–659  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    20. Peter E. Haagensen, Kenneth Johnson, “Yang-Mills fields and Riemannian geometry”, Nuclear Physics B, 439:3 (1995), 597  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:656
    Full-text PDF :222
    References:73
    First page:3
     
      Contact us:
    math-net2025_03@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025