Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1982, Volume 52, Number 2, Pages 263–269 (Mi tmf2525)  

This article is cited in 7 scientific papers (total in 7 papers)

Eigenfunctions of the Hartree–Fock equation that are not spherically symmetric

M. V. Karasev, Yu. V. Osipov
Full-text PDF (875 kB) Citations (7)
References:
Abstract: For Hartree–Fock operator with a small parameter multiplying the nonlinear term, perturbation theory is used to prove the existence of states that do not possess spherical symmetry and depend smoothly on the parameter. Five branches of eigenvalues are found that emerge from an unperturbed point of the spectrum with multiplicity equal to four.
Received: 10.06.1981
English version:
Theoretical and Mathematical Physics, 1982, Volume 52, Issue 2, Pages 789–793
DOI: https://doi.org/10.1007/BF01018420
Bibliographic databases:
Language: Russian
Citation: M. V. Karasev, Yu. V. Osipov, “Eigenfunctions of the Hartree–Fock equation that are not spherically symmetric”, TMF, 52:2 (1982), 263–269; Theoret. and Math. Phys., 52:2 (1982), 789–793
Citation in format AMSBIB
\Bibitem{KarOsi82}
\by M.~V.~Karasev, Yu.~V.~Osipov
\paper Eigenfunctions of the Hartree--Fock equation that are not spherically symmetric
\jour TMF
\yr 1982
\vol 52
\issue 2
\pages 263--269
\mathnet{http://mi.mathnet.ru/tmf2525}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=683442}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 52
\issue 2
\pages 789--793
\crossref{https://doi.org/10.1007/BF01018420}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982QF16500011}
Linking options:
  • https://www.mathnet.ru/eng/tmf2525
  • https://www.mathnet.ru/eng/tmf/v52/i2/p263
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:493
    Full-text PDF :141
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024