Abstract:
In the framework of the quantum inverse scattering method, local integrals of the motion are obtained for the nonlinear Schrödinger equation.
Citation:
A. G. Izergin, V. E. Korepin, F. A. Smirnov, “Trace formulas for the quantum nonlinear Schrödinger equation”, TMF, 48:3 (1981), 319–323; Theoret. and Math. Phys., 48:3 (1981), 773–776
This publication is cited in the following 22 articles:
N. A. Slavnov, “Algebraic Bethe ansatz approach to the correlation functions of the one-dimensional bosons with attraction”, JHEP, 2024 (2024), 61
A. Melikyan, A. Pinzul, G. Weber, “Higher charges and regularized quantum trace identities in su(1,1) Landau–Lifshitz model”, Journal of Mathematical Physics, 51:12 (2010)
T. C. Dorlas, “Orthogonality and completeness of the Bethe Ansatz eigenstates of the nonlinear Schroedinger model”, Commun.Math. Phys., 154:2 (1993), 347
D. A. Coker, Springer Series in Nonlinear Dynamics, Nonlinear Processes in Physics, 1993, 87
A. Roy Chowdhury, Shibani Sen, “Quantum inverse problem for an extended derivative nonlinear Schrödinger system”, Phys. Rev. D, 35:4 (1987), 1280
N. M. Bogolyubov, V. E. Korepin, “Quantum nonlinear Schrödinger equation on a lattice”, Theoret. and Math. Phys., 66:3 (1986), 300–305
N. M. Bogolyubov, “Thermodynamics of a one-dimensional lattice Bose gas”, Theoret. and Math. Phys., 67:3 (1986), 614–622
A. G. Izergin, V. E. Korepin, “Lattice regularizations of two-dimensional quantum-field models”, J Math Sci, 34:5 (1986), 1937
A. G. Izergin, V. E. Korepin, “The Pauli principle for one-dimensional bosons and the algebraic bethe ansatz”, J Math Sci, 34:5 (1986), 1933
I. M. Khamitov, “Local fields in the inverse scattering method”, Theoret. and Math. Phys., 62:3 (1985), 217–224
N. M. Bogolyubov, V. E. Korepin, “Temperature dependence of the correlation length in a one-dimensional Bose gas”, Theoret. and Math. Phys., 64:1 (1985), 708–715
N.M. Bogoliubov, V.E. Korepin, “Correlation length of the one-dimensional Bose gas”, Nuclear Physics B, 257 (1985), 766
A. G. Izergin, V. E. Korepin, “Correlation functions in the quantum inverse scattering method”, J Math Sci, 31:6 (1985), 3317
N.M. Bogoliubov, V.E. Korepin, “Correlation length of the one-dimensional Bose gas”, Physics Letters A, 111:8-9 (1985), 419
N. M. Bogolyubov, V. E. Korepin, “Correlation functions of one-dimensional Bose gas in thermodynamic equilibrium”, Theoret. and Math. Phys., 60:2 (1984), 808–814
A. G. Izergin, V. E. Korepin, “The quantum inverse scattering method approach to correlation functions”, Commun.Math. Phys., 94:1 (1984), 67
V. O. Tarasov, L. A. Takhtadzhyan, L. D. Faddeev, “Local Hamiltonians for integrable quantum models on a lattice”, Theoret. and Math. Phys., 57:2 (1983), 1059–1073
N. M. Bogolyubov, “On the physical sector of the lattice sine-Gordon model”, Theoret. and Math. Phys., 51:3 (1982), 540–547
F. A. Smirnov, “Connection between the sine-Gordon model and the massive bose thirring model”, Theoret. and Math. Phys., 53:3 (1982), 1153–1160
P. P. Kulish, E. K. Sklyanin, Lecture Notes in Physics, 151, Integrable Quantum Field Theories, 1982, 61