Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 49, Number 2, Pages 178–189 (Mi tmf2464)  

This article is cited in 2 scientific papers (total in 2 papers)

On the unique solvability of the Cauchy problem for the equations of motion of discrete analogs of multidimensional chiral fields taking values on compact symmetric spaces

B. I. Shubov
References:
Abstract: A class of models in classical statistical mechanics that are the discrete analogs of multidimensional chiral fields taking values on compact symmetric spaces is considered. The existence and uniqueness of a solution to the Cauchy problem with arbitrary initial data are proved for the equations of motion of these models. It follows from this result that for the considered models the dynamics exists on the entire infinitedimensional phase space. It is also shown that the constructed dynamics is the limit of a sequence of finite-dimensional dynamics.
Received: 23.01.1981
English version:
Theoretical and Mathematical Physics, 1981, Volume 49, Issue 2, Pages 966–974
DOI: https://doi.org/10.1007/BF01028990
Bibliographic databases:
Language: Russian
Citation: B. I. Shubov, “On the unique solvability of the Cauchy problem for the equations of motion of discrete analogs of multidimensional chiral fields taking values on compact symmetric spaces”, TMF, 49:2 (1981), 178–189; Theoret. and Math. Phys., 49:2 (1981), 966–974
Citation in format AMSBIB
\Bibitem{Shu81}
\by B.~I.~Shubov
\paper On the unique solvability of the Cauchy problem for the equations of motion of discrete analogs of multidimensional chiral fields taking values on compact symmetric spaces
\jour TMF
\yr 1981
\vol 49
\issue 2
\pages 178--189
\mathnet{http://mi.mathnet.ru/tmf2464}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=661604}
\zmath{https://zbmath.org/?q=an:0477.70017}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 49
\issue 2
\pages 966--974
\crossref{https://doi.org/10.1007/BF01028990}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NV49900004}
Linking options:
  • https://www.mathnet.ru/eng/tmf2464
  • https://www.mathnet.ru/eng/tmf/v49/i2/p178
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:253
    Full-text PDF :86
    References:54
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024