Abstract:
Functional integration is used to obtain the asymptotic behavior of the partition function of
Dicke type models in the limit $N\to\infty$, where $N$ is the number of atoms.
Citation:
V. N. Popov, S. A. Fedotov, “Behavior of the partition function of Dicke type models in the limit of a large number of atoms”, TMF, 51:1 (1982), 73–85; Theoret. and Math. Phys., 51:1 (1982), 363–371
\Bibitem{PopFed82}
\by V.~N.~Popov, S.~A.~Fedotov
\paper Behavior of the partition function of Dicke type models in the limit of a~large number of atoms
\jour TMF
\yr 1982
\vol 51
\issue 1
\pages 73--85
\mathnet{http://mi.mathnet.ru/tmf2395}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=672767}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 51
\issue 1
\pages 363--371
\crossref{https://doi.org/10.1007/BF01029262}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PP79800007}
Linking options:
https://www.mathnet.ru/eng/tmf2395
https://www.mathnet.ru/eng/tmf/v51/i1/p73
This publication is cited in the following 22 articles: