Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1982, Volume 51, Number 1, Pages 34–43 (Mi tmf2387)  

This article is cited in 5 scientific papers (total in 5 papers)

Perturbation theory for the nonlinear Schrödinger equation in the solitonless sector

B. A. Malomed
References:
Abstract: The nonlinear Schrödinger equation with a perturbation of polynomial type is considered. A perturbation theory in the solitonless situation is developed on the basis of the perturbed equations of motion for canonical variables constructed from scattering data. It is shown that closed equations of the perturbation theory containing only canonical variables can be obtained in the case of a “quasi-asymptotic” initial condition. The cases in which these equations can be solved iteratively are established. Also considered is the ease of an initial condition with spectrum cut off in the “infrared” region. In this case, averaging over the rapid unperturbed motions makes it possible to reduce the equations of the perturbation theory to a closed form as well. A solution to these equations is obtained in implicit form.
Received: 03.02.1981
English version:
Theoretical and Mathematical Physics, 1982, Volume 51, Issue 1, Pages 338–343
DOI: https://doi.org/10.1007/BF01029259
Bibliographic databases:
Language: Russian
Citation: B. A. Malomed, “Perturbation theory for the nonlinear Schrödinger equation in the solitonless sector”, TMF, 51:1 (1982), 34–43; Theoret. and Math. Phys., 51:1 (1982), 338–343
Citation in format AMSBIB
\Bibitem{Mal82}
\by B.~A.~Malomed
\paper Perturbation theory for the nonlinear Schr\"odinger equation in the solitonless sector
\jour TMF
\yr 1982
\vol 51
\issue 1
\pages 34--43
\mathnet{http://mi.mathnet.ru/tmf2387}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=672764}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 51
\issue 1
\pages 338--343
\crossref{https://doi.org/10.1007/BF01029259}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PP79800004}
Linking options:
  • https://www.mathnet.ru/eng/tmf2387
  • https://www.mathnet.ru/eng/tmf/v51/i1/p34
  • This publication is cited in the following 5 articles:
    1. P. I. Naumkin, I. A. Shishmarev, “The asymptotics as t of solutions of a nonlinear nonlocal Schrödinger equation”, Math. USSR-Sb., 73:2 (1992), 393–413  mathnet  crossref  mathscinet  zmath  adsnasa  isi
    2. Yuri S. Kivshar, Boris A. Malomed, “Dynamics of solitons in nearly integrable systems”, Rev. Mod. Phys., 61:4 (1989), 763  crossref
    3. F.G. Bass, Yu.S. Kivshar, V.V. Konotop, Yu.A. Sinitsyn, “Dynamics of solitons under random perturbations”, Physics Reports, 157:2 (1988), 63  crossref
    4. B. A. Malomed, “Evolution of solitonless wave packets in the nonlinear Schrödinger equation and the Korteweg–de Vries equation with dissipative perturbations”, Theoret. and Math. Phys., 69:2 (1986), 1079–1088  mathnet  crossref  mathscinet  zmath  isi
    5. Boris A. Malomed, “Inelastic interactions of solitons in nearly integrable systems. I”, Physica D: Nonlinear Phenomena, 15:3 (1985), 374  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :183
    References:79
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025