Abstract:
The concept of the characteristic algebra of a system of equations of the form uz¯¯¯z=F(u) is introduced. This algebra is associated with Lie–Bäcklund transformations. The conditions of integrability of such systems are formulated. It is shown that the case of integrability in quadrature corresponds to finite dimensionality of the characteristic
algebra, while the case of integrability by the inverse scattering technique corresponds
to this algebra's having a finite-dimensional representation. These requirements
determine the form of the right-hand side F for integrable systems.
Citation:
A. N. Leznov, V. G. Smirnov, A. B. Shabat, “The group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems”, TMF, 51:1 (1982), 10–21; Theoret. and Math. Phys., 51:1 (1982), 322–330
\Bibitem{LezSmiSha82}
\by A.~N.~Leznov, V.~G.~Smirnov, A.~B.~Shabat
\paper The~group of internal symmetries and the conditions of integrability of two-dimensional dynamical systems
\jour TMF
\yr 1982
\vol 51
\issue 1
\pages 10--21
\mathnet{http://mi.mathnet.ru/tmf2380}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=672763}
\zmath{https://zbmath.org/?q=an:0504.35023|0547.35024}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 51
\issue 1
\pages 322--330
\crossref{https://doi.org/10.1007/BF01029257}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PP79800002}
Linking options:
https://www.mathnet.ru/eng/tmf2380
https://www.mathnet.ru/eng/tmf/v51/i1/p10
This publication is cited in the following 72 articles:
M. N. Kuznetsova, I. T. Habibullin, A. R. Khakimova, “On the problem of classifying integrable chains with three independent variables”, Theoret. and Math. Phys., 215:2 (2023), 667–690
M. N. Kuznetsova, “Construction of localized particular solutions of chains with three independent variables”, Theoret. and Math. Phys., 216:2 (2023), 1158–1167
I. T. Habibullin, A. R. Khakimova, “On the classification of nonlinear integrable three-dimensional chains via characteristic Lie algebras”, Theoret. and Math. Phys., 217:1 (2023), 1541–1573
M. N. Kuznetsova, “On nonlinear hyperbolic systems related by Bäcklund transforms”, Ufa Math. J., 15:3 (2023), 80–87
Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204
D. V. Millionshchikov, S. V. Smirnov, “Characteristic algebras and integrable exponential systems”, Ufa Math. J., 13:2 (2021), 41–69
Ufa Math. J., 13:2 (2021), 170–186
A. V. Zhiber, M. N. Kuznetsova, “Integrals and characteristic Lie rings of semi-discrete systems of equations”, Ufa Math. J., 13:2 (2021), 22–32
Maria N. Kuznetsova, “Lax Pair for a Novel Two-Dimensional Lattice”, SIGMA, 17 (2021), 088, 13 pp.
Habibullin I.T. Kuznetsova M.N., “An Algebraic Criterion of the Darboux Integrability of Differential-Difference Equations and Systems”, J. Phys. A-Math. Theor., 54:50 (2021), 505201
Habibullin I. Khakimova A., “Integrable Boundary Conditions For the Hirota-Miwa Equation and Lie Algebras”, J. Nonlinear Math. Phys., 27:3 (2020), 393–413
Ufa Math. J., 11:3 (2019), 109–131
Habibullin I.T. Khakimova A.R., “Discrete Exponential Type Systems on a Quad Graph, Corresponding to the Affine Lie Algebras a(N)(-1)((1) )”, J. Phys. A-Math. Theor., 52:36 (2019), 365202
D. V. Millionshchikov, “Polynomial Lie algebras and growth of their finitely generated Lie subalgebras”, Proc. Steklov Inst. Math., 302 (2018), 298–314
S. Ya. Startsev, “Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants”, Ufa Math. J., 10:4 (2018), 103–110
Dmitry Millionshchikov, “Lie Algebras of Slow Growth and Klein–Gordon PDE”, Algebr. Represent. Theory, 2018, 1–33
Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.
D. V. Millionshchikov, “Characteristic Lie algebras of the sinh-Gordon and Tzitzeica equations”, Russian Math. Surveys, 72:6 (2017), 1174–1176
Zheltukhin K. Zheltukhina N. Bilen E., “On a Class of Darboux-Integrable Semidiscrete Equations”, Adv. Differ. Equ., 2017, 182
Demskoi D.K. Tran D.T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991