Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1980, Volume 42, Number 2, Pages 280–283 (Mi tmf2374)  

This article is cited in 14 scientific papers (total in 14 papers)

Justification of the renormalization-group method

I. A. Kashapov
References:
Abstract: The notion of the renormalization group (RG) in statistical physics which was introduced first in the works by Kadanoff and Wilson [1, 2] was initially formulated in terms of Hamiltonian. Later on, in some mathematical works the notion of RG was formulated as a natural generalisation of limit theorems of probability theory [3–5]. It is shown that a rigorous formalization of RG in terms of the Hamiltonian of Gibbs field is possible in the high temperature region. It is proved that RG transforms the Gibbs state into Gibbs one and the Hamiltonians of the transformed Gibbs field are calculated explicitly.
Received: 09.01.1979
English version:
Theoretical and Mathematical Physics, 1980, Volume 42, Issue 2, Pages 184–186
DOI: https://doi.org/10.1007/BF01032123
Bibliographic databases:
Language: Russian
Citation: I. A. Kashapov, “Justification of the renormalization-group method”, TMF, 42:2 (1980), 280–283; Theoret. and Math. Phys., 42:2 (1980), 184–186
Citation in format AMSBIB
\Bibitem{Kas80}
\by I.~A.~Kashapov
\paper Justification of~the renormalization-group method
\jour TMF
\yr 1980
\vol 42
\issue 2
\pages 280--283
\mathnet{http://mi.mathnet.ru/tmf2374}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=563856}
\transl
\jour Theoret. and Math. Phys.
\yr 1980
\vol 42
\issue 2
\pages 184--186
\crossref{https://doi.org/10.1007/BF01032123}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1980KH91900013}
Linking options:
  • https://www.mathnet.ru/eng/tmf2374
  • https://www.mathnet.ru/eng/tmf/v42/i2/p280
  • This publication is cited in the following 14 articles:
    1. Tom Kennedy, Slava Rychkov, “Tensor Renormalization Group at Low Temperatures: Discontinuity Fixed Point”, Ann. Henri Poincaré, 25:1 (2024), 773  crossref
    2. Nikolay Ebel, “3D Tensor Renormalisation Group at High Temperatures”, Ann. Henri Poincaré, 2024  crossref
    3. Tom Kennedy, Slava Rychkov, “Tensor RG Approach to High-Temperature Fixed Point”, J Stat Phys, 187:3 (2022)  crossref
    4. Mei Yin, “A cluster expansion approach to renormalization group transformations”, Journal of Mathematical Physics, 52:3 (2011)  crossref
    5. Tom Kennedy, “Renormalization Group Maps for Ising Models in Lattice-Gas Variables”, J Stat Phys, 140:3 (2010), 409  crossref
    6. Aernout C. D. van Enter, “Ill-defined block-spin transformations at arbitrarily high temperatures”, J Stat Phys, 83:3-4 (1996), 761  crossref
    7. Karl Haller, Tom Kennedy, “Absence of renormalization group pathologies near the critical temperature. Two examples”, J Stat Phys, 85:5-6 (1996), 607  crossref
    8. A. C. D. van Enter, R. Fernández, A. D. Sokal, NATO ASI Series, 324, On Three Levels, 1994, 155  crossref
    9. Aernout C. D. van Enter, Roberto Fernández, Alan D. Sokal, “Regularity properties and pathologies of position-space renormalization-group transformations: Scope and limitations of Gibbsian theory”, J Stat Phys, 72:5-6 (1993), 879  crossref
    10. Tom Kennedy, “Some rigorous results on majority rule renormalization group transformations near the critical point”, J Stat Phys, 72:1-2 (1993), 15  crossref
    11. T. C. Dorlas, A. C. D. van Enter, “Non-Gibbsian limit for large-block majority-spin transformations”, J Stat Phys, 55:1-2 (1989), 171  crossref
    12. P. M. Bleher, D. Surgailis, “Self-similar random fields”, J. Soviet Math., 25:6 (1984), 1499–1529  mathnet  mathnet  crossref
    13. A. C. D. van Enter, “Instability of phase diagrams for a class of “irrelevant” perturbations”, Phys. Rev. B, 26:3 (1982), 1336  crossref
    14. P. M. Bleher, M. D. Missarov, “The equations of Wilson's renormalization group and analytic renormalization”, Commun.Math. Phys., 74:3 (1980), 235  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:327
    Full-text PDF :106
    References:45
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025