Abstract:
The completely integrable problem of Kowalewski's top in classical mechanics is
extended to the groups O(4) and O(3,1). For each classical system on the groups O(4), E(3), O(3,1) three inequivalent quantum analogs are found. For the Coulomb problem, this results in the construction of one Kowalewski basis in classical mechanics and three in quantum mechanics.
\Bibitem{Kom81}
\by I.~V.~Komarov
\paper Kowalewski basis for the hydrogen atom
\jour TMF
\yr 1981
\vol 47
\issue 1
\pages 67--72
\mathnet{http://mi.mathnet.ru/tmf2369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=616440}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 47
\issue 1
\pages 320--324
\crossref{https://doi.org/10.1007/BF01017022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MS49200005}
Linking options:
https://www.mathnet.ru/eng/tmf2369
https://www.mathnet.ru/eng/tmf/v47/i1/p67
This publication is cited in the following 29 articles:
G. Heckman, “Exercises on the Kepler ellipses through a fixed point in space, after Otto Laporte”, Indagationes Mathematicae, 2025
E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222
V. A. Kibkalo, “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88
Velimir Jurdjevic, “Integrable Systems: In the Footprints of the Greats”, Mathematics, 11:4 (2023), 1063
Jurdjevic V., “Kowalewski TOP and Complex Lie Algebras”, Anal. Math. Phys., 11:4 (2021), 173
Kibkalo V., “Topological Classification of Liouville Foliations For the Kovalevskaya Integrable Case on the Lie Algebra So(3,1)”, Topology Appl., 275 (2020), 107028
V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:6 (2020), 263–267
V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662
Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520
V. Kibkalo, “Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)”, Lobachevskii J Math, 39:9 (2018), 1396
Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65
V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123
Vladimir Dragović, Borislav Gajić, “Some Recent Generalizations of the Classical Rigid Body Systems”, Arnold Math J., 2:4 (2016), 511
P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317
Vladimir Dragović, Katarina Kukić, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 49
I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572
Proc. Steklov Inst. Math., 286 (2014), 224–239
A. V. Vershilov, Yu. A. Grigorev, A. V. Tsyganov, “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinam., 10:2 (2014), 223–236
Dragovic V., Kukic K., “Role of Discriminantly Separable Polynomials in Integrable Dynamical Systems”, Tim 2013 Physics Conference, AIP Conference Proceedings, 1634, eds. Bunoiu O., Avram N., Popescu A., Amer Inst Physics, 2014, 3–8
Vladimir Dragović, Katarina Kukić, “Systems of Kowalevski Type and Discriminantly Separable Polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184