Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 47, Number 1, Pages 67–72 (Mi tmf2369)  

This article is cited in 29 scientific papers (total in 29 papers)

Kowalewski basis for the hydrogen atom

I. V. Komarov
References:
Abstract: The completely integrable problem of Kowalewski's top in classical mechanics is extended to the groups O(4) and O(3,1). For each classical system on the groups O(4), E(3), O(3,1) three inequivalent quantum analogs are found. For the Coulomb problem, this results in the construction of one Kowalewski basis in classical mechanics and three in quantum mechanics.
Received: 02.02.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 47, Issue 1, Pages 320–324
DOI: https://doi.org/10.1007/BF01017022
Bibliographic databases:
Language: Russian
Citation: I. V. Komarov, “Kowalewski basis for the hydrogen atom”, TMF, 47:1 (1981), 67–72; Theoret. and Math. Phys., 47:1 (1981), 320–324
Citation in format AMSBIB
\Bibitem{Kom81}
\by I.~V.~Komarov
\paper Kowalewski basis for the hydrogen atom
\jour TMF
\yr 1981
\vol 47
\issue 1
\pages 67--72
\mathnet{http://mi.mathnet.ru/tmf2369}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=616440}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 47
\issue 1
\pages 320--324
\crossref{https://doi.org/10.1007/BF01017022}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981MS49200005}
Linking options:
  • https://www.mathnet.ru/eng/tmf2369
  • https://www.mathnet.ru/eng/tmf/v47/i1/p67
  • This publication is cited in the following 29 articles:
    1. G. Heckman, “Exercises on the Kepler ellipses through a fixed point in space, after Otto Laporte”, Indagationes Mathematicae, 2025  crossref
    2. E. S. Agureeva, V. A. Kibkalo, “Topological analysis of axisymmetric Zhukovsky system for the case of the Lie algebra $e(2,1)$”, Moscow University Mathematics Bulletin, 79:5 (2024), 207–222  mathnet  crossref  crossref  elib
    3. V. A. Kibkalo, “Pervyi klass Appelrota psevdoevklidovoi sistemy Kovalevskoi”, Chebyshevskii sb., 24:1 (2023), 69–88  mathnet  crossref
    4. Velimir Jurdjevic, “Integrable Systems: In the Footprints of the Greats”, Mathematics, 11:4 (2023), 1063  crossref
    5. Jurdjevic V., “Kowalewski TOP and Complex Lie Algebras”, Anal. Math. Phys., 11:4 (2021), 173  crossref  isi
    6. Kibkalo V., “Topological Classification of Liouville Foliations For the Kovalevskaya Integrable Case on the Lie Algebra So(3,1)”, Topology Appl., 275 (2020), 107028  crossref  isi
    7. V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow University Mathematics Bulletin, Moscow University Mеchanics Bulletin, 75:6 (2020), 263–267  mathnet  crossref  mathscinet  zmath  isi
    8. V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    9. Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520  mathscinet  isi
    10. V. Kibkalo, “Topological Analysis of the Liouville Foliation for the Kovalevskaya Integrable Case on the Lie Algebra so(4)”, Lobachevskii J Math, 39:9 (2018), 1396  crossref
    11. Mikhail P. Kharlamov, Pavel E. Ryabov, Alexander Yu. Savushkin, “Topological Atlas of the Kowalevski–Sokolov Top”, Regul. Chaotic Dyn., 21:1 (2016), 24–65  mathnet  crossref  mathscinet  zmath
    12. V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $\mathrm{so}(4)$ under zero area integral”, Moscow University Mathematics Bulletin, 71:3 (2016), 119–123  mathnet  crossref  mathscinet  isi
    13. Vladimir Dragović, Borislav Gajić, “Some Recent Generalizations of the Classical Rigid Body Systems”, Arnold Math J., 2:4 (2016), 511  crossref
    14. P. E. Ryabov, A. Yu. Savushkin, “Fazovaya topologiya volchka Kovalevskoi – Sokolova”, Nelineinaya dinam., 11:2 (2015), 287–317  mathnet
    15. Vladimir Dragović, Katarina Kukić, Springer Proceedings in Physics, 163, Nonlinear Mathematical Physics and Natural Hazards, 2015, 49  crossref
    16. I. K. Kozlov, “The topology of the Liouville foliation for the Kovalevskaya integrable case on the Lie algebra so(4)”, Sb. Math., 205:4 (2014), 532–572  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    17. Proc. Steklov Inst. Math., 286 (2014), 224–239  mathnet  crossref  crossref  isi  elib  elib
    18. A. V. Vershilov, Yu. A. Grigorev, A. V. Tsyganov, “Ob odnoi integriruemoi deformatsii volchka Kovalevskoi”, Nelineinaya dinam., 10:2 (2014), 223–236  mathnet
    19. Dragovic V., Kukic K., “Role of Discriminantly Separable Polynomials in Integrable Dynamical Systems”, Tim 2013 Physics Conference, AIP Conference Proceedings, 1634, eds. Bunoiu O., Avram N., Popescu A., Amer Inst Physics, 2014, 3–8  crossref  isi
    20. Vladimir Dragović, Katarina Kukić, “Systems of Kowalevski Type and Discriminantly Separable Polynomials”, Regul. Chaotic Dyn., 19:2 (2014), 162–184  mathnet  crossref  mathscinet  zmath
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:564
    Full-text PDF :206
    References:67
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025