Abstract:
A method is proposed for calculating critical indices based on the skeleton equations for the propagators; it yields equations for the indices of the type of
self-consistent field equations. When these equations are iterated, the usual 1/n expansion of the indices is obtained. The method makes it possible to calculate the indices η and ν in the order 1/n2 for any number of dimensions.
Citation:
A. N. Vasil'ev, Yu. M. Pis'mak, Yu. R. Khonkonen, “Simple method of calculating the critical indices in the 1/n expansion”, TMF, 46:2 (1981), 157–171; Theoret. and Math. Phys., 46:2 (1981), 104–113
\Bibitem{VasPisKho81}
\by A.~N.~Vasil'ev, Yu.~M.~Pis'mak, Yu.~R.~Khonkonen
\paper Simple method of calculating the critical indices in the $1/n$~expansion
\jour TMF
\yr 1981
\vol 46
\issue 2
\pages 157--171
\mathnet{http://mi.mathnet.ru/tmf2311}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 46
\issue 2
\pages 104--113
\crossref{https://doi.org/10.1007/BF01030844}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NE30200002}
Linking options:
https://www.mathnet.ru/eng/tmf2311
https://www.mathnet.ru/eng/tmf/v46/i2/p157
This publication is cited in the following 147 articles:
Daniele Artico, Julien Barrat, Giulia Peveri, “Perturbative bootstrap of the Wilson-line defect CFT: multipoint correlators”, J. High Energ. Phys., 2025:2 (2025)
Christian Jepsen, Yaron Oz, “RG flows and fixed points of O(N)r models”, J. High Energ. Phys., 2024:2 (2024)
A. L. Pismenskii, Yu. M. Pis'mak, “Scaling violation and the appearance of mass in scalar quantum field theories”, Theoret. and Math. Phys., 217:1 (2023), 1495–1504
Johan Henriksson, “The critical O(N) CFT: Methods and conformal data”, Physics Reports, 1002 (2023), 1
Noam Chai, Mikhail Goykhman, Ritam Sinha, “Conformal correlators in the critical
O(N)
vector model”, Phys. Rev. D, 105:8 (2022)
J. A. Gracey, “Five loop renormalization of the Wess-Zumino model”, Phys. Rev. D, 105:2 (2022)
Noam Chai, Soumangsu Chakraborty, Mikhail Goykhman, Ritam Sinha, “Long-range fermions and critical dualities”, J. High Energ. Phys., 2022:1 (2022)
Martin Hasenbusch, “Three-dimensional
O(N)
-invariant
ϕ4
models at criticality for
N≥4”, Phys. Rev. B, 105:5 (2022)
I. Jack, D. R. T. Jones, “Scaling dimensions at large charge for cubic
ϕ3
theory in six dimensions”, Phys. Rev. D, 105:4 (2022)
V.N. Velizhanin, “Fermionic contribution to the anomalous dimension of twist-2 operators in N=4 SYM theory, critical indices and integrability”, Physics Letters B, 835 (2022), 137589
Omar Shahpo, Edoardo Vescovi, “Correlation functions of determinant operators in conformal fishnet theory”, J. High Energ. Phys., 2022:6 (2022)
Rafael Moser, Domenico Orlando, Susanne Reffert, “Convexity, large charge and the large-N phase diagram of the φ4 theory”, J. High Energ. Phys., 2022:2 (2022)
John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.
Chai N. Goykhman M. Sinha R., “Long-Range Vector Models At Large N”, J. High Energy Phys., 2021, no. 9, 194
Damon J. Binder, “The cubic fixed point at large N”, J. High Energ. Phys., 2021:9 (2021)
Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, Lukas Janssen, “Fractionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order”, Phys. Rev. B, 103:15 (2021)
J. A. Gracey, “Critical exponent
η
at
O(1/N3)
in the chiral XY model using the large
N
conformal bootstrap”, Phys. Rev. D, 103:6 (2021)
Rufus Boyack, Hennadii Yerzhakov, Joseph Maciejko, “Quantum phase transitions in Dirac fermion systems”, Eur. Phys. J. Spec. Top., 230:4 (2021), 979
Mikhail Goykhman, Ritam Sinha, “CFT data in the Gross-Neveu model”, Phys. Rev. D, 103:12 (2021)
Noam Chai, Eliezer Rabinovici, Ritam Sinha, Michael Smolkin, “The bi-conical vector model at 1/N”, J. High Energ. Phys., 2021:5 (2021)