Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1981, Volume 46, Number 2, Pages 157–171 (Mi tmf2311)  

This article is cited in 147 scientific papers (total in 147 papers)

Simple method of calculating the critical indices in the 1/n expansion

A. N. Vasil'ev, Yu. M. Pis'mak, Yu. R. Khonkonen

Leningrad State University
References:
Abstract: A method is proposed for calculating critical indices based on the skeleton equations for the propagators; it yields equations for the indices of the type of self-consistent field equations. When these equations are iterated, the usual 1/n expansion of the indices is obtained. The method makes it possible to calculate the indices η and ν in the order 1/n2 for any number of dimensions.
Received: 06.12.1980
English version:
Theoretical and Mathematical Physics, 1981, Volume 46, Issue 2, Pages 104–113
DOI: https://doi.org/10.1007/BF01030844
Bibliographic databases:
Language: Russian
Citation: A. N. Vasil'ev, Yu. M. Pis'mak, Yu. R. Khonkonen, “Simple method of calculating the critical indices in the 1/n expansion”, TMF, 46:2 (1981), 157–171; Theoret. and Math. Phys., 46:2 (1981), 104–113
Citation in format AMSBIB
\Bibitem{VasPisKho81}
\by A.~N.~Vasil'ev, Yu.~M.~Pis'mak, Yu.~R.~Khonkonen
\paper Simple method of calculating the critical indices in the $1/n$~expansion
\jour TMF
\yr 1981
\vol 46
\issue 2
\pages 157--171
\mathnet{http://mi.mathnet.ru/tmf2311}
\transl
\jour Theoret. and Math. Phys.
\yr 1981
\vol 46
\issue 2
\pages 104--113
\crossref{https://doi.org/10.1007/BF01030844}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1981NE30200002}
Linking options:
  • https://www.mathnet.ru/eng/tmf2311
  • https://www.mathnet.ru/eng/tmf/v46/i2/p157
  • This publication is cited in the following 147 articles:
    1. Daniele Artico, Julien Barrat, Giulia Peveri, “Perturbative bootstrap of the Wilson-line defect CFT: multipoint correlators”, J. High Energ. Phys., 2025:2 (2025)  crossref
    2. Christian Jepsen, Yaron Oz, “RG flows and fixed points of O(N)r models”, J. High Energ. Phys., 2024:2 (2024)  crossref
    3. A. L. Pismenskii, Yu. M. Pis'mak, “Scaling violation and the appearance of mass in scalar quantum field theories”, Theoret. and Math. Phys., 217:1 (2023), 1495–1504  mathnet  crossref  crossref  mathscinet  adsnasa
    4. Johan Henriksson, “The critical O(N) CFT: Methods and conformal data”, Physics Reports, 1002 (2023), 1  crossref
    5. Noam Chai, Mikhail Goykhman, Ritam Sinha, “Conformal correlators in the critical O(N) vector model”, Phys. Rev. D, 105:8 (2022)  crossref
    6. J. A. Gracey, “Five loop renormalization of the Wess-Zumino model”, Phys. Rev. D, 105:2 (2022)  crossref
    7. Noam Chai, Soumangsu Chakraborty, Mikhail Goykhman, Ritam Sinha, “Long-range fermions and critical dualities”, J. High Energ. Phys., 2022:1 (2022)  crossref
    8. Martin Hasenbusch, “Three-dimensional O(N) -invariant ϕ4 models at criticality for N≥4”, Phys. Rev. B, 105:5 (2022)  crossref
    9. I. Jack, D. R. T. Jones, “Scaling dimensions at large charge for cubic ϕ3 theory in six dimensions”, Phys. Rev. D, 105:4 (2022)  crossref
    10. V.N. Velizhanin, “Fermionic contribution to the anomalous dimension of twist-2 operators in N=4 SYM theory, critical indices and integrability”, Physics Letters B, 835 (2022), 137589  crossref
    11. Omar Shahpo, Edoardo Vescovi, “Correlation functions of determinant operators in conformal fishnet theory”, J. High Energ. Phys., 2022:6 (2022)  crossref
    12. Rafael Moser, Domenico Orlando, Susanne Reffert, “Convexity, large charge and the large-N phase diagram of the φ4 theory”, J. High Energ. Phys., 2022:2 (2022)  crossref
    13. John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.  mathnet  crossref
    14. Chai N. Goykhman M. Sinha R., “Long-Range Vector Models At Large N”, J. High Energy Phys., 2021, no. 9, 194  crossref  isi
    15. Damon J. Binder, “The cubic fixed point at large N”, J. High Energ. Phys., 2021:9 (2021)  crossref
    16. Shouryya Ray, Bernhard Ihrig, Daniel Kruti, John A. Gracey, Michael M. Scherer, Lukas Janssen, “Fractionalized quantum criticality in spin-orbital liquids from field theory beyond the leading order”, Phys. Rev. B, 103:15 (2021)  crossref
    17. J. A. Gracey, “Critical exponent η at O(1/N3) in the chiral XY model using the large N conformal bootstrap”, Phys. Rev. D, 103:6 (2021)  crossref
    18. Rufus Boyack, Hennadii Yerzhakov, Joseph Maciejko, “Quantum phase transitions in Dirac fermion systems”, Eur. Phys. J. Spec. Top., 230:4 (2021), 979  crossref
    19. Mikhail Goykhman, Ritam Sinha, “CFT data in the Gross-Neveu model”, Phys. Rev. D, 103:12 (2021)  crossref
    20. Noam Chai, Eliezer Rabinovici, Ritam Sinha, Michael Smolkin, “The bi-conical vector model at 1/N”, J. High Energ. Phys., 2021:5 (2021)  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:627
    Full-text PDF :272
    References:75
    First page:3
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025