Abstract:
A study is made of analytic continuation with respect to the dimension of integrals of isotropic functions, I(ν)=∫f(x1,…,xn)dνx1…dνxnI(ν)=∫f(x1,…,xn)dνx1…dνxn, i.e., of functions such that f(Ux1,…,Uxn)=f(x1,…,xn)f(Ux1,…,Uxn)=f(x1,…,xn) for any orthogonal transformation U∈O(ν)U∈O(ν). The main result of the paper is the proof that if ff is a C∞C∞ rapidly decreasing function, f∈S, then I(ν) is an entire function of ν. Its order is estimated as a generalized function over the space for S different complex values of ν. A uniqueness theorem for the analytic continuation of I(ν) is established. Similar results are proved for an operator of integration with respect to some of the variables. The analytic continuation with respect to the dimension of the operator of Fourier transformation is considered.
Citation:
P. M. Bleher, “Integration of functions in a space with complex number of dimensions”, TMF, 50:3 (1982), 370–382; Theoret. and Math. Phys., 50:3 (1982), 243–251
\Bibitem{Ble82}
\by P.~M.~Bleher
\paper Integration of functions in a space with complex number of dimensions
\jour TMF
\yr 1982
\vol 50
\issue 3
\pages 370--382
\mathnet{http://mi.mathnet.ru/tmf2292}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=662213}
\zmath{https://zbmath.org/?q=an:0522.30001}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 3
\pages 243--251
\crossref{https://doi.org/10.1007/BF01016452}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PK24500006}
Linking options:
https://www.mathnet.ru/eng/tmf2292
https://www.mathnet.ru/eng/tmf/v50/i3/p370
This publication is cited in the following 5 articles:
Alexander D. Scott, Alan D. Sokal, “Complete monotonicity for inverse powers of some combinatorially defined polynomials”, Acta Math., 213:2 (2014), 323
Yu. V. Kozitskii, “The Lee-Yang property for some isotropic spin models”, Theoret. and Math. Phys., 83:1 (1990), 353–361
P. M. Bleher, M. D. Missarov, “Invariant manifolds of the Wilson renormalization group”, Theoret. and Math. Phys., 74:2 (1988), 132–136
Edward B. Manoukian, “Power counting and regularization through loop integrations for multiple Feynman integrals in Minkowski space”, Int J Theor Phys, 23:12 (1984), 1129
P. M. Bleher, D. Surgailis, “Self-similar random fields”, J. Soviet Math., 25:6 (1984), 1499–1529