Abstract:
A technique is developed for calculating the corrections in $1/n$ to the asymptotic
expression for the $n$-th term of the perturbation series for the example of the
scalar massless model $\varphi_{(4)}^4$ with internal symmetry $O(N)$. The first correction
for the $\beta$ function is obtained.
Citation:
Yu. A. Kubyshin, “Corrections to the asymptotic expressions for the higher orders of perturbation theory”, TMF, 57:3 (1983), 363–372; Theoret. and Math. Phys., 57:3 (1983), 1196–1202
\Bibitem{Kub83}
\by Yu.~A.~Kubyshin
\paper Corrections to the asymptotic expressions for the higher orders of perturbation theory
\jour TMF
\yr 1983
\vol 57
\issue 3
\pages 363--372
\mathnet{http://mi.mathnet.ru/tmf2268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=735395}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 3
\pages 1196--1202
\crossref{https://doi.org/10.1007/BF01018746}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SY87100004}
Linking options:
https://www.mathnet.ru/eng/tmf2268
https://www.mathnet.ru/eng/tmf/v57/i3/p363
This publication is cited in the following 9 articles:
M. V. Komarova, M. Yu. Nalimov, “Convergent perturbation theory and the strong coupling limit in quantum electrodynamics”, Theoret. and Math. Phys., 216:3 (2023), 1360–1372
Marina Komarova, Mikhail Kompaniets, Mikhail Nalimov, Springer Proceedings in Complexity, 15th Chaotic Modeling and Simulation International Conference, 2023, 141
Kompaniets M.V. Panzer E., “Minimally Subtracted Six-Loop Renormalization of O(N)-Symmetric Phi(4) Theory and Critical Exponents”, Phys. Rev. D, 96:3 (2017), 036016
M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, Theoret. and Math. Phys., 143:2 (2005), 664–680
Yudin, IL, “Perturbation theory with convergent series: the calculation of the lambda phi(4)((4))-field theory beta-function”, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 502:2–3 (2003), 633
Yu. A. Kubyshin, P. G. Tinyakov, “Instanton propagator and instanton induced processes in a scalar model”, Phys. Rev. D, 65:8 (2002)
M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory”, Theoret. and Math. Phys., 126:3 (2001), 339–353
I. D. Mandzhavidze, A. N. Sisakyan, “Perturbation theory in the neighborhood of extended objects”, Theoret. and Math. Phys., 123:3 (2000), 776–791
Yu. A. Kubyshin, “Sommerfeld–Watson summation of perturbation series”, Theoret. and Math. Phys., 58:1 (1984), 91–97