Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 57, Number 3, Pages 363–372 (Mi tmf2268)  

This article is cited in 9 scientific papers (total in 9 papers)

Corrections to the asymptotic expressions for the higher orders of perturbation theory

Yu. A. Kubyshin
Full-text PDF (499 kB) Citations (9)
References:
Abstract: A technique is developed for calculating the corrections in $1/n$ to the asymptotic expression for the $n$-th term of the perturbation series for the example of the scalar massless model $\varphi_{(4)}^4$ with internal symmetry $O(N)$. The first correction for the $\beta$ function is obtained.
Received: 03.01.1983
English version:
Theoretical and Mathematical Physics, 1983, Volume 57, Issue 3, Pages 1196–1202
DOI: https://doi.org/10.1007/BF01018746
Bibliographic databases:
Language: Russian
Citation: Yu. A. Kubyshin, “Corrections to the asymptotic expressions for the higher orders of perturbation theory”, TMF, 57:3 (1983), 363–372; Theoret. and Math. Phys., 57:3 (1983), 1196–1202
Citation in format AMSBIB
\Bibitem{Kub83}
\by Yu.~A.~Kubyshin
\paper Corrections to the asymptotic expressions for the higher orders of perturbation theory
\jour TMF
\yr 1983
\vol 57
\issue 3
\pages 363--372
\mathnet{http://mi.mathnet.ru/tmf2268}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=735395}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 3
\pages 1196--1202
\crossref{https://doi.org/10.1007/BF01018746}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SY87100004}
Linking options:
  • https://www.mathnet.ru/eng/tmf2268
  • https://www.mathnet.ru/eng/tmf/v57/i3/p363
  • This publication is cited in the following 9 articles:
    1. M. V. Komarova, M. Yu. Nalimov, “Convergent perturbation theory and the strong coupling limit in quantum electrodynamics”, Theoret. and Math. Phys., 216:3 (2023), 1360–1372  mathnet  crossref  crossref  mathscinet  adsnasa
    2. Marina Komarova, Mikhail Kompaniets, Mikhail Nalimov, Springer Proceedings in Complexity, 15th Chaotic Modeling and Simulation International Conference, 2023, 141  crossref
    3. Kompaniets M.V. Panzer E., “Minimally Subtracted Six-Loop Renormalization of O(N)-Symmetric Phi(4) Theory and Critical Exponents”, Phys. Rev. D, 96:3 (2017), 036016  crossref  isi
    4. M. V. Komarova, M. Yu. Nalimov, “Large-order asymptotic terms in perturbation theory: The first $(4-\epsilon)$-expansion correction to renormalization constants in the $O(n)$-symmetric theory”, Theoret. and Math. Phys., 143:2 (2005), 664–680  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    5. Yudin, IL, “Perturbation theory with convergent series: the calculation of the lambda phi(4)((4))-field theory beta-function”, Nuclear Instruments & Methods in Physics Research Section A-Accelerators Spectrometers Detectors and Associated Equipment, 502:2–3 (2003), 633  crossref  isi
    6. Yu. A. Kubyshin, P. G. Tinyakov, “Instanton propagator and instanton induced processes in a scalar model”, Phys. Rev. D, 65:8 (2002)  crossref
    7. M. V. Komarova, M. Yu. Nalimov, “Asymptotic Behavior of Renormalization Constants in Higher Orders of the Perturbation Expansion for the $(4?\epsilon)$-Dimensionally Regularized $O(n)$-Symmetric $\phi^4$ Theory”, Theoret. and Math. Phys., 126:3 (2001), 339–353  mathnet  crossref  crossref  mathscinet  zmath  isi
    8. I. D. Mandzhavidze, A. N. Sisakyan, “Perturbation theory in the neighborhood of extended objects”, Theoret. and Math. Phys., 123:3 (2000), 776–791  mathnet  crossref  crossref  mathscinet  zmath  isi
    9. Yu. A. Kubyshin, “Sommerfeld–Watson summation of perturbation series”, Theoret. and Math. Phys., 58:1 (1984), 91–97  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:543
    Full-text PDF :130
    References:77
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025