Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 57, Number 2, Pages 238–248 (Mi tmf2257)  

This article is cited in 4 scientific papers (total in 4 papers)

Explicit solutions of $O(3)$ and $O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions

M. G. Tseitlin
Full-text PDF (561 kB) Citations (4)
References:
Abstract: By means of elliptic solutions of the $O(3)$ and $O(2,1)$ $\sigma$ models parametrized by arbitrary holomorphie functions (generalization of a singular harmonic mapping) and the previously considered [1] correspondence between chiral models and systems with exponential interaction, elliptic solutions are obtained for one of the two-dimensional Toda chains corresponding to the Kac–Moody algebra parametrized by a holomorphie or an antiholomorphic function. Solutions of the sinh-Gordon equation are given. For the Ernst equation, a solution is generated by the meron sector of the $O(2,1)$ $\sigma$ model which is parametrized by two real functions (cylindrical waves) or a holomorphic function (stationary axisymmetric solutions). A solution of Liouville's equation on a torus is given.
Received: 04.04.1983
English version:
Theoretical and Mathematical Physics, 1983, Volume 57, Issue 2, Pages 1110–1117
DOI: https://doi.org/10.1007/BF01018654
Bibliographic databases:
Language: Russian
Citation: M. G. Tseitlin, “Explicit solutions of $O(3)$ and $O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions”, TMF, 57:2 (1983), 238–248; Theoret. and Math. Phys., 57:2 (1983), 1110–1117
Citation in format AMSBIB
\Bibitem{Tse83}
\by M.~G.~Tseitlin
\paper Explicit solutions of~$O(3)$ and~$O(2,1)$ chiral models and the associated equations of the two-dimensional Toda chain and the Ernst equation when the solutions are parametrized by arbitrary functions
\jour TMF
\yr 1983
\vol 57
\issue 2
\pages 238--248
\mathnet{http://mi.mathnet.ru/tmf2257}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=734886}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 2
\pages 1110--1117
\crossref{https://doi.org/10.1007/BF01018654}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SX71000007}
Linking options:
  • https://www.mathnet.ru/eng/tmf2257
  • https://www.mathnet.ru/eng/tmf/v57/i2/p238
  • This publication is cited in the following 4 articles:
    1. A. M. Grundland, P. Winternitz, W. J. Zakrzewski, “On the solutions of the CP1 model in (2+1) dimensions”, Journal of Mathematical Physics, 37:3 (1996), 1501  crossref
    2. Ioannis Bakas, “O(2, 2) transformations and the string Geroch group”, Nuclear Physics B, 428:1-2 (1994), 374  crossref
    3. M. G. Tseitlin, “Quasiconformal instantons”, J Math Sci, 40:1 (1988), 149  crossref
    4. M. G. Tseitlin, “Solutions of two-dimensional einstein equations parametrized by arbitrary functions and generated by the O(2, 1) $\sigma$ model”, Theoret. and Math. Phys., 64:1 (1985), 679–686  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:287
    Full-text PDF :116
    References:92
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025