Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 57, Number 1, Pages 55–62 (Mi tmf2238)  

Coherent states for $Sp(2,2)$ and geometrized decay model for an unstable system

I. A. Filanovskii
References:
Abstract: The decay amplitude of an unstable particle in a relativistic geometrized model is calculated. The states of the unstable system at an arbitrary instant of time are constructed as coherent states on the discrete series of unitary irreducible representations of the group $Sp(2,2)$ and are parametrized by a point of the hyperboloid $\xi^2=-\rho^2$. The radius of curvature $\rho$ is related to the coupling constant and the energy. The transition to the limit of stable objects is investigated.
Received: 15.12.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 57, Issue 1, Pages 988–992
DOI: https://doi.org/10.1007/BF01028174
Bibliographic databases:
Language: Russian
Citation: I. A. Filanovskii, “Coherent states for $Sp(2,2)$ and geometrized decay model for an unstable system”, TMF, 57:1 (1983), 55–62; Theoret. and Math. Phys., 57:1 (1983), 988–992
Citation in format AMSBIB
\Bibitem{Fil83}
\by I.~A.~Filanovskii
\paper Coherent states for~$Sp(2,2)$ and geometrized decay model for an unstable system
\jour TMF
\yr 1983
\vol 57
\issue 1
\pages 55--62
\mathnet{http://mi.mathnet.ru/tmf2238}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=726539}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 57
\issue 1
\pages 988--992
\crossref{https://doi.org/10.1007/BF01028174}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SR12800007}
Linking options:
  • https://www.mathnet.ru/eng/tmf2238
  • https://www.mathnet.ru/eng/tmf/v57/i1/p55
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:207
    Full-text PDF :82
    References:35
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024