Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 56, Number 2, Pages 260–271 (Mi tmf2210)  

This article is cited in 37 scientific papers (total in 37 papers)

Excitation spectrum of the anisotropic generalization of an SU3 magnet

V. I. Vichirko, N. Yu. Reshetikhin
References:
Abstract: The spectrum of an exactly solvable quantum-mechanical system on a chain with three-dimensional state space at a site is investigated. The system is related to the solution of the Yang–Baxter equations found by tzergin and Korepin. A new analytic method is used to find the eigenvatues of the generating function of the quantum integrals of the motion of the system. The thermodynamic limit over the antiferromagnetie ground state is considered.
Received: 18.10.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 56, Issue 2, Pages 805–812
DOI: https://doi.org/10.1007/BF01016823
Bibliographic databases:
Language: Russian
Citation: V. I. Vichirko, N. Yu. Reshetikhin, “Excitation spectrum of the anisotropic generalization of an SU3 magnet”, TMF, 56:2 (1983), 260–271; Theoret. and Math. Phys., 56:2 (1983), 805–812
Citation in format AMSBIB
\Bibitem{VicRes83}
\by V.~I.~Vichirko, N.~Yu.~Reshetikhin
\paper Excitation spectrum of the anisotropic generalization of an $SU_3$~magnet
\jour TMF
\yr 1983
\vol 56
\issue 2
\pages 260--271
\mathnet{http://mi.mathnet.ru/tmf2210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=718103}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 2
\pages 805--812
\crossref{https://doi.org/10.1007/BF01016823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SG66600010}
Linking options:
  • https://www.mathnet.ru/eng/tmf2210
  • https://www.mathnet.ru/eng/tmf/v56/i2/p260
  • This publication is cited in the following 37 articles:
    1. Nicolas Crampé, Dounia Shaaban Kabakibo, Luc Vinet, “The SU(3) ⊃ SO(3) missing label problem and the analytical Bethe Ansatz”, Int. J. Mod. Phys. A, 37:08 (2022)  crossref
    2. Bingtian Ye, Francisco Machado, Jack Kemp, Ross B. Hutson, Norman Y. Yao, “Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems”, Phys. Rev. Lett., 129:23 (2022)  crossref
    3. Ahmed I. Nepomechie R.I. Wang Ch., “Quantum Group Symmetries and Completeness For a(2N)((2)) Open Spin Chains”, J. Phys. A-Math. Theor., 50:28 (2017), 284002  crossref  isi
    4. Rafael I. Nepomechie, Rodrigo A. Pimenta, Ana L. Retore, “The integrable quantum group invariantA2n-1(2)andDn+1(2)open spin chains”, Nuclear Physics B, 924 (2017), 86  crossref
    5. M. P. Qin, J. M. Leinaas, S. Ryu, E. Ardonne, T. Xiang, D.-H. Lee, “Quantum torus chain”, Phys. Rev. B, 86:13 (2012)  crossref
    6. Nicolas Crampé, Eric Ragoucy, Ludovic Alonzi, “Coordinate Bethe Ansatz for Spin s XXX Model”, SIGMA, 7 (2011), 006, 13 pp.  mathnet  crossref  mathscinet
    7. Herman Boos, Frank Göhmann, Andreas Klümper, Khazret S Nirov, Alexander V Razumov, “On the universal $\boldmath $R$$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44:35 (2011), 355202  crossref
    8. TAKEO KOJIMA, “A REMARK ON GROUND STATE OF BOUNDARY IZERGIN–KOREPIN MODEL”, Int. J. Mod. Phys. A, 26:12 (2011), 1973  crossref
    9. Francisco C Alcaraz, Gilberto M Nakamura, “Phase diagram and spectral properties of a new exactly integrable spin-1 quantum chain”, J. Phys. A: Math. Theor., 43:15 (2010), 155002  crossref
    10. Anastasia Doikou, Davide Fioravanti, Francesco Ravanini, “The generalized non-linear Schrödinger model on the interval”, Nuclear Physics B, 790:3 (2008), 465  crossref
    11. Anastasia Doikou, Paul P Martin, “On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary”, J. Stat. Mech., 2006:06 (2006), P06004  crossref
    12. Radu Roiban, “On spin chains and field theories”, J. High Energy Phys., 2004:09 (2004), 023  crossref
    13. V. Kurak, A. Lima-Santos, “Algebraic Bethe ansatz for the Zamolodchikov–Fateev and Izergin–Korepin models with open boundary conditions”, Nuclear Physics B, 699:3 (2004), 595  crossref
    14. D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, “Bethe ansatz equations and exact S matrices for the osp(M|2n) open super-spin chain”, Nuclear Physics B, 687:3 (2004), 257  crossref
    15. D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, “Classification of reflection matrices related to (super-)Yangians and application to open spin chain models”, Nuclear Physics B, 668:3 (2003), 469  crossref
    16. Wagner Utiel, “Algebraic Bethe ansatz for 19-vertex models with reflection conditions”, J. Phys. A: Math. Gen., 36:36 (2003), 9425  crossref
    17. Hubert Saleur, Birgit Wehefritz-Kaufmann, “Integrable quantum field theories with OSP(m/2n) symmetries”, Nuclear Physics B, 628:3 (2002), 407  crossref
    18. E.C. Fireman, A. Lima-Santos, W. Utiel, “Bethe ansatz solution for quantum spin-1 chains with boundary terms”, Nuclear Physics B, 626:3 (2002), 435  crossref
    19. F C Alcaraz, R Z Bariev, “New exact integrable spin-1 quantum chains”, J. Phys. A: Math. Gen., 34:33 (2001), L467  crossref
    20. Anastasia Doikou, “Quantum spin chain with ‘soliton non-preserving’ boundary conditions”, J. Phys. A: Math. Gen., 33:48 (2000), 8797  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:384
    Full-text PDF :137
    References:64
    First page:1
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025