Abstract:
The spectrum of an exactly solvable quantum-mechanical system on a chain with
three-dimensional state space at a site is investigated. The system is related to
the solution of the Yang–Baxter equations found by tzergin and Korepin. A new
analytic method is used to find the eigenvatues of the generating function of the
quantum integrals of the motion of the system. The thermodynamic limit over
the antiferromagnetie ground state is considered.
Citation:
V. I. Vichirko, N. Yu. Reshetikhin, “Excitation spectrum of the anisotropic generalization of an SU3 magnet”, TMF, 56:2 (1983), 260–271; Theoret. and Math. Phys., 56:2 (1983), 805–812
\Bibitem{VicRes83}
\by V.~I.~Vichirko, N.~Yu.~Reshetikhin
\paper Excitation spectrum of the anisotropic generalization of an $SU_3$~magnet
\jour TMF
\yr 1983
\vol 56
\issue 2
\pages 260--271
\mathnet{http://mi.mathnet.ru/tmf2210}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=718103}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 2
\pages 805--812
\crossref{https://doi.org/10.1007/BF01016823}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SG66600010}
Linking options:
https://www.mathnet.ru/eng/tmf2210
https://www.mathnet.ru/eng/tmf/v56/i2/p260
This publication is cited in the following 37 articles:
Nicolas Crampé, Dounia Shaaban Kabakibo, Luc Vinet, “The SU(3) ⊃ SO(3) missing label problem and the analytical Bethe Ansatz”, Int. J. Mod. Phys. A, 37:08 (2022)
Bingtian Ye, Francisco Machado, Jack Kemp, Ross B. Hutson, Norman Y. Yao, “Universal Kardar-Parisi-Zhang Dynamics in Integrable Quantum Systems”, Phys. Rev. Lett., 129:23 (2022)
Ahmed I. Nepomechie R.I. Wang Ch., “Quantum Group Symmetries and Completeness For a(2N)((2)) Open Spin Chains”, J. Phys. A-Math. Theor., 50:28 (2017), 284002
Rafael I. Nepomechie, Rodrigo A. Pimenta, Ana L. Retore, “The integrable quantum group invariantA2n-1(2)andDn+1(2)open spin chains”, Nuclear Physics B, 924 (2017), 86
M. P. Qin, J. M. Leinaas, S. Ryu, E. Ardonne, T. Xiang, D.-H. Lee, “Quantum torus chain”, Phys. Rev. B, 86:13 (2012)
Nicolas Crampé, Eric Ragoucy, Ludovic Alonzi, “Coordinate Bethe Ansatz for Spin s XXX Model”, SIGMA, 7 (2011), 006, 13 pp.
Herman Boos, Frank Göhmann, Andreas Klümper, Khazret S Nirov, Alexander V Razumov, “On the universal $\boldmath $R$$-matrix for the Izergin–Korepin model”, J. Phys. A: Math. Theor., 44:35 (2011), 355202
TAKEO KOJIMA, “A REMARK ON GROUND STATE OF BOUNDARY IZERGIN–KOREPIN MODEL”, Int. J. Mod. Phys. A, 26:12 (2011), 1973
Francisco C Alcaraz, Gilberto M Nakamura, “Phase diagram and spectral properties of a new exactly integrable spin-1 quantum chain”, J. Phys. A: Math. Theor., 43:15 (2010), 155002
Anastasia Doikou, Davide Fioravanti, Francesco Ravanini, “The generalized non-linear Schrödinger model on the interval”, Nuclear Physics B, 790:3 (2008), 465
Anastasia Doikou, Paul P Martin, “On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary”, J. Stat. Mech., 2006:06 (2006), P06004
Radu Roiban, “On spin chains and field theories”, J. High Energy Phys., 2004:09 (2004), 023
V. Kurak, A. Lima-Santos, “Algebraic Bethe ansatz for the Zamolodchikov–Fateev and Izergin–Korepin models with open boundary conditions”, Nuclear Physics B, 699:3 (2004), 595
D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, “Bethe ansatz equations and exact S matrices for the osp(M|2n) open super-spin chain”, Nuclear Physics B, 687:3 (2004), 257
D. Arnaudon, J. Avan, N. Crampé, A. Doikou, L. Frappat, E. Ragoucy, “Classification of reflection matrices related to (super-)Yangians and application to open spin chain models”, Nuclear Physics B, 668:3 (2003), 469
Wagner Utiel, “Algebraic Bethe ansatz for 19-vertex models with reflection conditions”, J. Phys. A: Math. Gen., 36:36 (2003), 9425
Hubert Saleur, Birgit Wehefritz-Kaufmann, “Integrable quantum field theories with OSP(m/2n) symmetries”, Nuclear Physics B, 628:3 (2002), 407
E.C. Fireman, A. Lima-Santos, W. Utiel, “Bethe ansatz solution for quantum spin-1 chains with boundary terms”, Nuclear Physics B, 626:3 (2002), 435
F C Alcaraz, R Z Bariev, “New exact integrable spin-1 quantum chains”, J. Phys. A: Math. Gen., 34:33 (2001), L467
Anastasia Doikou, “Quantum spin chain with ‘soliton non-preserving’ boundary conditions”, J. Phys. A: Math. Gen., 33:48 (2000), 8797