Abstract:
The Regge–Lund–Omnes geometrical approach is generalized to arbitrary dimension d, and a chain of nonlinear string equations in d-dimensional space-time is obtained. The string is shown to be isomorphic to the closed state sector of the two-dimensional SO(1,1)×SO(d−2) gauge model.
Citation:
A. A. Zheltukhin, “Gauge description and nonlinear string equations in d-dimensional space-time”, TMF, 56:2 (1983), 230–245; Theoret. and Math. Phys., 56:2 (1983), 785–795
A. A. Zheltukhin, M. Trzetrzelewski, “U(1)-invariant membranes: The geometric formulation, Abel, and pendulum differential equations”, Journal of Mathematical Physics, 51:6 (2010)
A.A. Zheltukhin, “Unification of twistors and Ramond vectors”, Physics Letters B, 658:1-3 (2007), 82
Uvarov, DV, “New superembeddings for type-II superstrings”, Journal of High Energy Physics, 2002, no. 7, 008
Uvarov D.V., “New superembeddings for type-II superstrings”, Journal of High Energy Physics, 2002, no. 7, 008
Dmitriy V Uvarov, “New Superembeddings for Type II Superstrings”, J. High Energy Phys., 2002:07 (2002), 008
Dmitriy V. Uvarov, “On covariant κ-symmetry fixing and the relation between the NSR string and the type II GS superstring”, Physics Letters B, 493:3-4 (2000), 421
Igor A. Bandos, “On a zero curvature representation for bosonic strings and p-branes”, Physics Letters B, 388:1 (1996), 35
Igor A. Bandos, Dmitrij Sorokin, Dmitrij V. Volkov, “New supersymmetric generalization of the Liouville equation”, Physics Letters B, 372:1-2 (1996), 77
Igor A Bandos, Dmitrij Sorokin, Dmitrij V Volkov, “On the generalized action principle for superstrings and supermembranes”, Physics Letters B, 352:3-4 (1995), 269
Igor A. Bandos, Paolo Pasti, Dmitrij Sorokin, Mario Tonin, Dmitrij V. Volkov, “Superstrings and supermembranes in the doubly supersymmetric geometrical approach”, Nuclear Physics B, 446:1-2 (1995), 79