Abstract:
The Infeld–Hull factorization method is used to find operators that raise and lower the orbital quantum number l, and the dynamical symmetry group is constructed for the model of a harmonic oscillator in the relativistic configuration r representation.
Citation:
N. M. Atakishiyev, “Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld–Hull factorization method”, TMF, 56:1 (1983), 154–160; Theoret. and Math. Phys., 56:1 (1983), 735–739
\Bibitem{Ata83}
\by N.~M.~Atakishiyev
\paper Construction of dynamical symmetry group of the relativistic harmonic oscillator by the Infeld--Hull factorization method
\jour TMF
\yr 1983
\vol 56
\issue 1
\pages 154--160
\mathnet{http://mi.mathnet.ru/tmf2200}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 1
\pages 735--739
\crossref{https://doi.org/10.1007/BF01027551}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SA59100016}
Linking options:
https://www.mathnet.ru/eng/tmf2200
https://www.mathnet.ru/eng/tmf/v56/i1/p154
This publication is cited in the following 3 articles:
G Bangerezako, M N Hounkonnou, “The factorization method for the general second-orderq-difference equation and the Laguerre Hahn polynomials on the generalq-lattice”, J. Phys. A: Math. Gen., 36:3 (2003), 765
N. M. Atakishiyev, S. K. Suslov, “A realization fo the q-harmonic oscillator”, Theoret. and Math. Phys., 87:1 (1991), 442–444
N. M. Atakishiyev, S. K. Suslov, “Difference analogs of the harmonic oscillator”, Theoret. and Math. Phys., 85:1 (1990), 1055–1062