Abstract:
Equations of Davey–Stewartson type for nondegenerate dispersion taw are considered. It is shown that in two spatial dimensions all cases of their integrability reduce to ones already known, while in three spatial dimensions these equations are nonintegrable.
Citation:
E. I. Shulman, “On the integrability of equations of Davey–Stewartson type”, TMF, 56:1 (1983), 131–136; Theoret. and Math. Phys., 56:1 (1983), 720–724
\Bibitem{Shu83}
\by E.~I.~Shulman
\paper On the integrability of equations of Davey--Stewartson type
\jour TMF
\yr 1983
\vol 56
\issue 1
\pages 131--136
\mathnet{http://mi.mathnet.ru/tmf2197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=711016}
\zmath{https://zbmath.org/?q=an:0529.76020}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 1
\pages 720--724
\crossref{https://doi.org/10.1007/BF01027548}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SA59100013}
Linking options:
https://www.mathnet.ru/eng/tmf2197
https://www.mathnet.ru/eng/tmf/v56/i1/p131
This publication is cited in the following 33 articles:
Sheng-Nan Wang, Han-Han Sheng, Guo-Fu Yu, “Dynamics of the coupled (2+1)-dimensional Fokas system”, Z. Angew. Math. Phys., 76:1 (2025)
Yulei Cao, Jingsong He, Yi Cheng, “New localized wave structures in the Maccari system”, Nonlinear Dyn, 2024
Yu Zhao, Bo Tian, Cong-Cong Hu, Su-Su Chen, Shao-Hua Liu, “Interactions among the Rogue Waves and Solitons for a (2+1)-dimensional Maccari System in Fluid Mechanics and Nonlinear Optics”, Qual. Theory Dyn. Syst., 22:4 (2023)
Yu-Lan Ma, Abdul-Majid Wazwaz, Bang-Qing Li, “Soliton resonances, soliton molecules, soliton oscillations and heterotypic solitons for the nonlinear Maccari system”, Nonlinear Dyn, 111:19 (2023), 18331
Asymptotic Perturbation Methods, 2023, 219
Fu H., Ruan Ch., Hu W., “Soliton Solutions to the Nonlocal Davey-Stewartson III Equation”, Mod. Phys. Lett. B, 35:1 (2021), 2150026
Yulei Cao, Yi Cheng, Boris A. Malomed, Jingsong He, “Rogue waves and lumps on the nonzero background in the ‐symmetric nonlocal Maccari system”, Stud Appl Math, 147:2 (2021), 694
Asma Issasfa, Ji Lin, “N-soliton and rogue wave solutions of (2+1)-dimensional integrable system with Lax pair”, Int. J. Mod. Phys. B, 33:27 (2019), 1950317
Jiguang Rao, Dumitru Mihalache, Yi Cheng, Jingsong He, “Lump-soliton solutions to the Fokas system”, Physics Letters A, 383:11 (2019), 1138
Jiguang Rao, Kuppuswamy Porsezian, Jingsong He, “Semi-rational solutions of the third-type Davey-Stewartson equation”, Chaos: An Interdisciplinary Journal of Nonlinear Science, 27:8 (2017)
Javier Villarroel, Julia Prada, Pilar G Estévez, “Weakly decaying solutions of nonlinear Schrödinger equation in the plane”, J. Phys. A: Math. Theor., 50:49 (2017), 495203
Javier Villarroel, Julia Prada, Pilar G. Estévez, “Discrete Spectrum of 2 + 1-Dimensional Nonlinear Schrödinger Equation and Dynamics of Lumps”, Advances in Mathematical Physics, 2016 (2016), 1
Klein Ch., Saut J.-C., “a Numerical Approach To Blow-Up Issues For Davey-Stewartson II Systems”, Commun. Pure Appl. Anal, 14:4 (2015), 1443–1467
Klein Ch., Saut J.-C., “IST Versus PDE: A Comparative Study”, Hamiltonian Partial Differential Equations and Applications, Fields Institute Communications, eds. Guyenne P., Nicholls D., Sulem C., Springer, 2015, 383–449
Javier Villarroel, Julia Prada, “Considerations on conserved quantities and boundary conditions of the 2+1-dimensional nonlinear Schrödinger equation”, Physica D: Nonlinear Phenomena, 300 (2015), 15
A. Eden, T.B. Gürel, “On the integrability of a generalized Davey–Stewartson system”, Physica D: Nonlinear Phenomena, 259 (2013), 1
P G Estévez, J Prada, J Villarroel, “On an algorithmic construction of lump solutions in a 2+1 integrable equation”, J. Phys. A: Math. Theor., 40:26 (2007), 7213
C. Rogers, W. K. Schief, Bäcklund and Darboux Transformations, 2002
A. Degasperis, C. Rogers, W. K. Schief, “Isothermic Surfaces Generated via Bäcklund and Moutard Transformations: Boomeron and Zoomeron Connections”, Stud Appl Math, 109:1 (2002), 39