Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 56, Number 1, Pages 80–86 (Mi tmf2192)  

This article is cited in 11 scientific papers (total in 11 papers)

Markovian KMS states

V. Ya. Golodets, G. N. Zholtkevich
References:
Abstract: Markovian KMS states on algebras of quasilocal observables are considered. Criteria for KMS states to be Markovian are proved in terms of modular groups and local density matrices. It is established that Markovian KMS states can be diagonalized.
Received: 09.11.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 56, Issue 1, Pages 686–690
DOI: https://doi.org/10.1007/BF01027543
Bibliographic databases:
Language: Russian
Citation: V. Ya. Golodets, G. N. Zholtkevich, “Markovian KMS states”, TMF, 56:1 (1983), 80–86; Theoret. and Math. Phys., 56:1 (1983), 686–690
Citation in format AMSBIB
\Bibitem{GolZho83}
\by V.~Ya.~Golodets, G.~N.~Zholtkevich
\paper Markovian KMS~states
\jour TMF
\yr 1983
\vol 56
\issue 1
\pages 80--86
\mathnet{http://mi.mathnet.ru/tmf2192}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=711012}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 56
\issue 1
\pages 686--690
\crossref{https://doi.org/10.1007/BF01027543}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983SA59100008}
Linking options:
  • https://www.mathnet.ru/eng/tmf2192
  • https://www.mathnet.ru/eng/tmf/v56/i1/p80
  • This publication is cited in the following 11 articles:
    1. Abdessatar Souissi, Farrukh Mukhamedov, “Entropy of quantum Markov states on Cayley trees”, J. Stat. Mech., 2022:9 (2022), 093101  crossref
    2. Farrukh Mukhamedov, Abdessatar Souissi, “Refinement of quantum Markov states on trees”, J. Stat. Mech., 2021:8 (2021), 083103  crossref
    3. Farrukh Mukhamedov, Abdessatar Souissi, “Diagonalizability of Quantum Markov States on Trees”, J Stat Phys, 182:1 (2021)  crossref
    4. Farrukh Mukhamedov, Abdessatar Souissi, “Quantum Markov states on Cayley trees”, Journal of Mathematical Analysis and Applications, 473:1 (2019), 313  crossref
    5. Mukhamedov F., Barhoumi A., Souissi A., “Phase Transitions for Quantum Markov Chains Associated with Ising Type Models on a Cayley Tree”, J. Stat. Phys., 163:3 (2016), 544–567  crossref  mathscinet  zmath  isi  elib  scopus
    6. Accardi L., Mukhamedov F., Souissi A., “On Construction of Quantum Markov Chains on Cayley trees”, Algebra, Analysis and Quantum Probability, Journal of Physics Conference Series, 697, eds. Ayupov S., Chilin V., Ganikhodjaev N., Mukhamedov F., Rakhimov I., IOP Publishing Ltd, 2016, 012018  crossref  isi  scopus
    7. LUIGI ACCARDI, FRANCESCO FIDALEO, FARRUH MUKHAMEDOV, “MARKOV STATES AND CHAINS ON THE CAR ALGEBRA”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 10:02 (2007), 165  crossref
    8. Fidaleo F., Mukhamedov F., “On factors associated with quantum Markov states corresponding to nearest neighbor models on a Cayley tree”, Quantum Probability and Infinite Dimensional Analysis, Qp-Pq Quantum Probability and White Noise Analysis, 18, 2005, 237–251  isi
    9. Mukhamedov, F, “On a factor associated with the unordered phase of lambda-model on a Cayley tree”, Reports on Mathematical Physics, 53:1 (2004), 1  crossref  isi
    10. Mukhamedov, F, “On Gibbs measures of models with competing ternary and binary interactions and corresponding von Neumann algebras”, Journal of Statistical Physics, 114:3–4 (2004), 825  crossref  isi
    11. F. M. Mukhamedov, “Von Neumann algebras generated by translation-invariant Gibbs states of the Ising model on a Bethe lattice”, Theoret. and Math. Phys., 123:1 (2000), 489–493  mathnet  crossref  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:456
    Full-text PDF :126
    References:72
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025