Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 136, Number 2, Pages 271–284
DOI: https://doi.org/10.4213/tmf219
(Mi tmf219)
 

This article is cited in 4 scientific papers (total in 4 papers)

Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere

V. M. Eleonskii, V. G. Korolev, N. E. Kulagin

State Research Institute of Physical Problems
Full-text PDF (241 kB) Citations (4)
References:
Abstract: We consider a class of “fractional” Hamiltonian systems generalizing the classical problem of motion in a central field. Our analysis is based on transforming an integrable Hamiltonian system with two degrees of freedom on the plane into a dynamical system that is defined on the sphere and inherits the integrals of motion of the original system. We show that in the four-dimensional space of structural parameters, there exists a one-dimensional manifold (containing the case of the planar Kepler problem) along which the closedness of the orbits of all finite motions and the third Kepler law are preserved. Similarly, there exists a one-dimensional manifold (containing the case of the two-dimensional isotropic harmonic oscillator) along which the closedness of the orbits and the isochronism of oscillations are preserved. Any deformation of orbits on these manifolds does not violate the hidden symmetry typical of the two-dimensional isotropic oscillator and the planar Kepler problem. We also consider two-dimensional manifolds on which all systems are characterized by the same rotation number for the orbits of all finite motions.
Keywords: Kepler problem, fractional Hamiltonian systems, isochronal motion.
Received: 30.09.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 136, Issue 2, Pages 1131–1142
DOI: https://doi.org/10.1023/A:1025018005746
Bibliographic databases:
Language: Russian
Citation: V. M. Eleonskii, V. G. Korolev, N. E. Kulagin, “Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere”, TMF, 136:2 (2003), 271–284; Theoret. and Math. Phys., 136:2 (2003), 1131–1142
Citation in format AMSBIB
\Bibitem{EleKorKul03}
\by V.~M.~Eleonskii, V.~G.~Korolev, N.~E.~Kulagin
\paper Dynamical Systems Related to Fractional Hamiltonians on the Two-Dimensional Sphere
\jour TMF
\yr 2003
\vol 136
\issue 2
\pages 271--284
\mathnet{http://mi.mathnet.ru/tmf219}
\crossref{https://doi.org/10.4213/tmf219}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025376}
\zmath{https://zbmath.org/?q=an:1178.70083}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 136
\issue 2
\pages 1131--1142
\crossref{https://doi.org/10.1023/A:1025018005746}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000185531200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf219
  • https://doi.org/10.4213/tmf219
  • https://www.mathnet.ru/eng/tmf/v136/i2/p271
  • This publication is cited in the following 4 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:474
    Full-text PDF :202
    References:68
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024