Abstract:
We consider a discrete classical integrable model on a three-dimensional cubic lattice. The solutions of this model can be used to parameterize the Boltzmann weights of various three-dimensional spin models. We find the general solution of this model constructed in terms of the theta functions defined on an arbitrary compact algebraic curve. Imposing periodic boundary conditions fixes the algebraic curve. We show that the curve then coincides with the spectral curve of the auxiliary linear problem. For a rational curve, we construct the soliton solution of the model.
Citation:
S. Z. Pakulyak, S. M. Sergeev, “Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model”, TMF, 136:1 (2003), 30–51; Theoret. and Math. Phys., 136:1 (2003), 917–935
\Bibitem{PakSer03}
\by S.~Z.~Pakulyak, S.~M.~Sergeev
\paper Spectral Curves and Parameterization of a Discrete Integrable Three-Dimensional Model
\jour TMF
\yr 2003
\vol 136
\issue 1
\pages 30--51
\mathnet{http://mi.mathnet.ru/tmf214}
\crossref{https://doi.org/10.4213/tmf214}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025782}
\elib{https://elibrary.ru/item.asp?id=13436753}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 136
\issue 1
\pages 917--935
\crossref{https://doi.org/10.1023/A:1024541320960}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184767700003}
Linking options:
https://www.mathnet.ru/eng/tmf214
https://doi.org/10.4213/tmf214
https://www.mathnet.ru/eng/tmf/v136/i1/p30
This publication is cited in the following 4 articles:
Sergey M. Sergeev, “On difference equations with 'B'-type solitons on three dimensional lattice”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100793
Von Gehlen G., Pakuliak S., Sergeev S., “3-dimensional integrable lattice models and the Bazhanov-Stroganov model”, Differential Geometry and Physics, Nankai Tracts in Mathematics, 10, 2006, 210–220
von Gehlen G, Pakuliak S, Sergeev S, “The Bazhanov-Stroganov model from 3D approach”, Journal of Physics A-Mathematical and General, 38:33 (2005), 7269–7298
S. M. Sergeev, “Evidence for a Phase Transition in Three-Dimensional Lattice Models”, Theoret. and Math. Phys., 138:3 (2004), 310–321