Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 136, Number 1, Pages 115–147
DOI: https://doi.org/10.4213/tmf213
(Mi tmf213)
 

This article is cited in 3 scientific papers (total in 3 papers)

Representation of Quantum Brownian Motion in the Collective Coordinate Method

A. I. Oksaka, A. D. Sukhanovb

a Russian Correspondence Institute of Textile and Light Industry
b Peoples Friendship University of Russia
Full-text PDF (382 kB) Citations (3)
References:
Abstract: We consider two explicitly solvable models of quantum random processes described by the Langevin equation, namely, those for a “free” quantum Brownian particle and for a quantum Brownian harmonic oscillator. The Hamiltonian (string) realization of the models reveals a soliton-like structure of “classical” solutions. Accordingly, the zero-mode collective coordinate method turns out to be an adequate means for describing the quantum dynamics of the models.
Keywords: quantum Langevin equation, string thermostat model, temperature representations, asymptotic properties of covariation.
Received: 25.06.2002
Revised: 30.12.2002
English version:
Theoretical and Mathematical Physics, 2003, Volume 136, Issue 1, Pages 994–1021
DOI: https://doi.org/10.1023/A:1024501706847
Bibliographic databases:
Language: Russian
Citation: A. I. Oksak, A. D. Sukhanov, “Representation of Quantum Brownian Motion in the Collective Coordinate Method”, TMF, 136:1 (2003), 115–147; Theoret. and Math. Phys., 136:1 (2003), 994–1021
Citation in format AMSBIB
\Bibitem{OksSuk03}
\by A.~I.~Oksak, A.~D.~Sukhanov
\paper Representation of Quantum Brownian Motion in the Collective Coordinate Method
\jour TMF
\yr 2003
\vol 136
\issue 1
\pages 115--147
\mathnet{http://mi.mathnet.ru/tmf213}
\crossref{https://doi.org/10.4213/tmf213}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2025785}
\zmath{https://zbmath.org/?q=an:1178.82014}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 136
\issue 1
\pages 994--1021
\crossref{https://doi.org/10.1023/A:1024501706847}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184767700008}
Linking options:
  • https://www.mathnet.ru/eng/tmf213
  • https://doi.org/10.4213/tmf213
  • https://www.mathnet.ru/eng/tmf/v136/i1/p115
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:625
    Full-text PDF :242
    References:87
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024