Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1983, Volume 54, Number 2, Pages 258–267 (Mi tmf2118)  

This article is cited in 5 scientific papers (total in 5 papers)

Investigation of baryon-like bound states of nonrelativistic quarks in the self-consistent field approximation

A. A. Bogolyubskaya, I. L. Bogolyubskii
Full-text PDF (616 kB) Citations (5)
References:
Abstract: The 1/N expansion is used to investigate the nonrelativistic model of baryons proposed by Witten: N quarks (N1) of one flavor in the same spin state bound by two-particle attractive forces determined by a potential V(r). The coordinate part of the wave function of the N quarks forming the bound state is represented in the form ψ(x1,,xN)=Ni=1φ(xi). The resulting integrodifferential spectral problem is solved by reduction to nonlinear differential equations of higher order. The following potentials are considered: 1) V(r)=g2r1, 2) V(r)=g2α2r, 3) V(r)=g2(r1+α2r). A computer was used to find the characteristics of the corresponding baryon-like bound states of N quarks.
Received: 06.01.1982
English version:
Theoretical and Mathematical Physics, 1983, Volume 54, Issue 2, Pages 168–175
DOI: https://doi.org/10.1007/BF01129190
Bibliographic databases:
Language: Russian
Citation: A. A. Bogolyubskaya, I. L. Bogolyubskii, “Investigation of baryon-like bound states of nonrelativistic quarks in the self-consistent field approximation”, TMF, 54:2 (1983), 258–267; Theoret. and Math. Phys., 54:2 (1983), 168–175
Citation in format AMSBIB
\Bibitem{BogBog83}
\by A.~A.~Bogolyubskaya, I.~L.~Bogolyubskii
\paper Investigation of baryon-like bound states of nonrelativistic quarks in the self-consistent field approximation
\jour TMF
\yr 1983
\vol 54
\issue 2
\pages 258--267
\mathnet{http://mi.mathnet.ru/tmf2118}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 2
\pages 168--175
\crossref{https://doi.org/10.1007/BF01129190}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RG50200010}
Linking options:
  • https://www.mathnet.ru/eng/tmf2118
  • https://www.mathnet.ru/eng/tmf/v54/i2/p258
  • This publication is cited in the following 5 articles:
    1. V. V. Belov, A. Yu. Trifonov, A. V. Shapovalov, “Semiclassical Trajectory-Coherent Approximations of Hartree-Type Equations”, Theoret. and Math. Phys., 130:3 (2002), 391–418  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    2. A. V. Pereskokov, “Asymptotic Solutions of Two-Dimensional Hartree-Type Equations Localized in the Neighborhood of Line Segments”, Theoret. and Math. Phys., 131:3 (2002), 775–790  mathnet  crossref  crossref  mathscinet  zmath  isi  elib
    3. M. V. Karasev, A. V. Pereskokov, “Asymptotic solutions of Hartree equations concentrated near low-dimensional submanifolds. I. The model with logarithmic singularity”, Izv. Math., 65:5 (2001), 883–921  mathnet  crossref  crossref  mathscinet  zmath
    4. M. V. Karasev, A. V. Pereskokov, “Logarithmic corrections in a quantization rule. The polaron spectrum”, Theoret. and Math. Phys., 97:1 (1993), 1160–1170  mathnet  crossref  mathscinet  isi
    5. S. K. Turitsyn, “Spatial dispersion of nonlinearity and stability of multidimensional solitons”, Theoret. and Math. Phys., 64:2 (1985), 797–801  mathnet  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:258
    Full-text PDF :88
    References:52
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025