Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 1982, Volume 50, Number 2, Pages 251–260 (Mi tmf2107)  

This article is cited in 5 scientific papers (total in 5 papers)

Chew–Low equations as cremona transformations structure of general intgrals

K. V. Rerikh
References:
Abstract: The Chew–Low equations for the $p$ waves of pion-nucleon scattering with ($3\times3$) crossing symmetry matrix are investigated in the well-known form of a nonlinear system of difference equations. It is shown these equations, interpreted as geometrical transformations, are a special case of Cremona transformations. Using the properties of Cremona transformations, we obtain general functional equations, which depend on three parameters, for algebraic and nonalgebraic invariant curves in the space of solutions of the Chew–Low equations. It is shown that there is only one algebraic invariant curve, a parabola corresponding to the well-known solution. Analysis of the general functional equation for nonalgebraic invariant curves shows that besides this parabola there are three invariant forms which specify implicitly three nonalgebraic curves: a general equation for them is found by fixing the parameters. An important result follows from the transformation properties of these invariant forms with respect to Cremona transformations, namely, the ratio of these forms to appropriate powers is a general integral of the nonlinear system of Chew–Low equations: it is an even antiperiodic function. The structure of a second general integral and the functional equation of which it is a solution are given.
Received: 01.12.1980
English version:
Theoretical and Mathematical Physics, 1982, Volume 50, Issue 2, Pages 164–170
DOI: https://doi.org/10.1007/BF01015297
Bibliographic databases:
Language: Russian
Citation: K. V. Rerikh, “Chew–Low equations as cremona transformations structure of general intgrals”, TMF, 50:2 (1982), 251–260; Theoret. and Math. Phys., 50:2 (1982), 164–170
Citation in format AMSBIB
\Bibitem{Rer82}
\by K.~V.~Rerikh
\paper Chew--Low equations as cremona transformations structure of general intgrals
\jour TMF
\yr 1982
\vol 50
\issue 2
\pages 251--260
\mathnet{http://mi.mathnet.ru/tmf2107}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=662041}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 2
\pages 164--170
\crossref{https://doi.org/10.1007/BF01015297}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PH72200007}
Linking options:
  • https://www.mathnet.ru/eng/tmf2107
  • https://www.mathnet.ru/eng/tmf/v50/i2/p251
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024