Abstract:
For arbitrary causal functions satisfying the spectral condition Tauberian theorems are
established which give a correspondence between their self-similar asymptotic behavior and their asymptotic behavior in the neighborhood of the light cone.
Citation:
A. N. Vasil'ev, Yu. M. Pis'mak, Yu. R. Khonkonen, “1/n1/n expansion: clculation of the exponent ηη in the order 1/n31/n3 by the conformal bootstrap method”, TMF, 50:2 (1982), 195–206; Theoret. and Math. Phys., 50:2 (1982), 127–134
\Bibitem{VasPisKho82}
\by A.~N.~Vasil'ev, Yu.~M.~Pis'mak, Yu.~R.~Khonkonen
\paper $1/n$ expansion: clculation of the exponent $\eta$ in the order $1/n^3$ by the conformal bootstrap method
\jour TMF
\yr 1982
\vol 50
\issue 2
\pages 195--206
\mathnet{http://mi.mathnet.ru/tmf2102}
\transl
\jour Theoret. and Math. Phys.
\yr 1982
\vol 50
\issue 2
\pages 127--134
\crossref{https://doi.org/10.1007/BF01015292}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1982PH72200002}
Linking options:
https://www.mathnet.ru/eng/tmf2102
https://www.mathnet.ru/eng/tmf/v50/i2/p195
This publication is cited in the following 126 articles:
Marten Reehorst, Slava Rychkov, Benoit Sirois, Balt van Rees, “Bootstrapping frustrated magnets: the fate of the chiral ${\rm O}(N)\times {\rm O}(2)$ universality class”, SciPost Phys., 18:2 (2025)
Christian Jepsen, Yaron Oz, “RG flows and fixed points of O(N)r models”, J. High Energ. Phys., 2024:2 (2024)
A. L. Pismenskii, Yu. M. Pis'mak, “Scaling violation and the appearance of mass in scalar quantum field theories”, Theoret. and Math. Phys., 217:1 (2023), 1495–1504
S. E. Derkachev, A. I. Isaev, L. A. Shumilov, “Zig-Zag Diagrams and Conformal Triangles”, Phys. Part. Nuclei Lett., 20:3 (2023), 240
Johan Henriksson, “The critical O(N) CFT: Methods and conformal data”, Physics Reports, 1002 (2023), 1
S. E. Derkachov, A. P. Isaev, L. A. Shumilov, “Ladder and zig-zag Feynman diagrams, operator formalism and conformal triangles”, J. High Energ. Phys., 2023:6 (2023)
Simon Caron-Huot, Yan Gobeil, Zahra Zahraee, “The leading trajectory in the 2+1D Ising CFT”, J. High Energ. Phys., 2023:2 (2023)
Martin Hasenbusch, “Three-dimensional
O(N)
-invariant
ϕ4
models at criticality for
N≥4”, Phys. Rev. B, 105:5 (2022)
I. Jack, D. R. T. Jones, “Scaling dimensions at large charge for cubic
ϕ3
theory in six dimensions”, Phys. Rev. D, 105:4 (2022)
Alexander Bednyakov, Andrey Pikelner, “Six-loop anomalous dimension of the
ϕQ
operator in the
O(N)
symmetric model”, Phys. Rev. D, 106:7 (2022)
S. Derkachov, A.P. Isaev, L. Shumilov, “Conformal triangles and zig-zag diagrams”, Physics Letters B, 830 (2022), 137150
J. A. Gracey, “Five loop renormalization of the Wess-Zumino model”, Phys. Rev. D, 105:2 (2022)
John A. Gracey, “Generalized Gross–Neveu Universality Class with Non-Abelian Symmetry”, SIGMA, 17 (2021), 064, 20 pp.
Kompaniets M. Pikelner A., “Critical Exponents From Five-Loop Scalar Theory Renormalization Near Six-Dimensions”, Phys. Lett. B, 817 (2021), 136331
Sergey Derkachov, Enrico Olivucci, “Conformal quantum mechanics & the integrable spinning Fishnet”, J. High Energ. Phys., 2021:11 (2021)
J. A. Gracey, “Critical exponent
η
at
O(1/N3)
in the chiral XY model using the large
N
conformal bootstrap”, Phys. Rev. D, 103:6 (2021)
Oleg Antipin, Jahmall Bersini, Francesco Sannino, Zhi-Wei Wang, Chen Zhang, “More on the cubic versus quartic interaction equivalence in the
O(N)
model”, Phys. Rev. D, 104:8 (2021)
Mikhail Goykhman, Ritam Sinha, “CFT data in the Gross-Neveu model”, Phys. Rev. D, 103:12 (2021)
Sergey Derkachov, Gwenaël Ferrando, Enrico Olivucci, “Mirror channel eigenvectors of the d-dimensional fishnets”, J. High Energ. Phys., 2021:12 (2021)
Johan Henriksson, Andreas Stergiou, “Perturbative and nonperturbative studies of CFTs with MN global symmetry”, SciPost Phys., 11:1 (2021)