Abstract:
A covariant one-time equation describing a state with zero spin in a system of two
spinor quarks is obtained. The asymptotic behavior of the wave function is investigated for quasipotential taken in the form of the one-gluon exchange amplitude.
Citation:
V. I. Savrin, N. B. Skachkov, G. Yu. Tyumenkov, “Covariant three-dimensional equation for the wave function of the π-meson in the composite model of spinor quarks”, TMF, 54:2 (1983), 173–182; Theoret. and Math. Phys., 54:2 (1983), 110–116
\Bibitem{SavSkaTyu83}
\by V.~I.~Savrin, N.~B.~Skachkov, G.~Yu.~Tyumenkov
\paper Covariant three-dimensional equation for the wave function of the $\pi$-meson in the composite model of spinor quarks
\jour TMF
\yr 1983
\vol 54
\issue 2
\pages 173--182
\mathnet{http://mi.mathnet.ru/tmf2094}
\transl
\jour Theoret. and Math. Phys.
\yr 1983
\vol 54
\issue 2
\pages 110--116
\crossref{https://doi.org/10.1007/BF01129182}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=A1983RG50200002}
Linking options:
https://www.mathnet.ru/eng/tmf2094
https://www.mathnet.ru/eng/tmf/v54/i2/p173
This publication is cited in the following 2 articles:
V. N. Kapshai, G. Yu. Tyumenkov, “(Qˉq)→ℓ˜vℓ decay constant in the covariant simultaneous approach”, Soviet Physics Journal, 35:2 (1992), 185
V. I. Savrin, E. M. Shablygin, “Approximate analytic solution of a quasipotential equation”, Theoret. and Math. Phys., 75:2 (1988), 478–482