Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 2, Pages 206–226
DOI: https://doi.org/10.4213/tmf2081
(Mi tmf2081)
 

This article is cited in 12 scientific papers (total in 12 papers)

Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients

S. V. Galtsev, A. I. Shafarevich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider a non-self-adjoint Schrödinger operator describing the motion of a particle in a one-dimensional space with an analytic potential $iV(x)$ that is periodic with a real period $T$ and is purely imaginary on the real axis. We study the spectrum of this operator in the semiclassical limit and show that the points of its spectrum asymptotically belong to the so-called spectral graph. We construct the spectral graph and evaluate the asymptotic form of the spectrum. A Riemann surface of the particle energy-conservation equation can be constructed in the phase space. We show that both the spectral graph and the asymptotic form of the spectrum can be evaluated in terms of integrals of the $p\,dx$ form (where $x\in\mathbb C/T\mathbb Z$ and $p\in\mathbb C$ are the particle coordinate and momentum) taken along basis cycles on this Riemann surface. We use the technique of Stokes lines to construct the asymptotic form of the spectrum.
Keywords: spectrum, spectral graph, non-self-adjoint operator, Schrödinger operator, Stokes lines.
Received: 15.12.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 2, Pages 1049–1066
DOI: https://doi.org/10.1007/s11232-006-0100-y
Bibliographic databases:
Language: Russian
Citation: S. V. Galtsev, A. I. Shafarevich, “Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients”, TMF, 148:2 (2006), 206–226; Theoret. and Math. Phys., 148:2 (2006), 1049–1066
Citation in format AMSBIB
\Bibitem{GalSha06}
\by S.~V.~Galtsev, A.~I.~Shafarevich
\paper Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
\jour TMF
\yr 2006
\vol 148
\issue 2
\pages 206--226
\mathnet{http://mi.mathnet.ru/tmf2081}
\crossref{https://doi.org/10.4213/tmf2081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283694}
\zmath{https://zbmath.org/?q=an:1177.81043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1049G}
\elib{https://elibrary.ru/item.asp?id=9312050}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 2
\pages 1049--1066
\crossref{https://doi.org/10.1007/s11232-006-0100-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240375300004}
\elib{https://elibrary.ru/item.asp?id=13510177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747188929}
Linking options:
  • https://www.mathnet.ru/eng/tmf2081
  • https://doi.org/10.4213/tmf2081
  • https://www.mathnet.ru/eng/tmf/v148/i2/p206
  • This publication is cited in the following 12 articles:
    1. A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351  crossref
    2. Hitrik M., Sjostrand J., “Rational Invariant Tori and Band Edge Spectra For Non-Selfadjoint Operators”, J. Eur. Math. Soc., 20:2 (2018), 391–457  crossref  mathscinet  zmath  isi  scopus  scopus
    3. Fujiie S., Wittsten J., “Quantization Conditions of Eigenvalues For Semiclassical Zakharov-Shabat Systems on the Circle”, Discret. Contin. Dyn. Syst., 38:8 (2018), 3851–3873  crossref  mathscinet  zmath  isi  scopus
    4. Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, eds. Filipuk G., Lastra A., Michalik S., Springer, 2018, 177–187  crossref  mathscinet  isi
    5. Drouot A., “Stochastic Stability of Pollicott-Ruelle Resonances”, Commun. Math. Phys., 356:2 (2017), 357–396  crossref  mathscinet  zmath  isi  scopus  scopus
    6. D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556  mathnet  mathnet  crossref  crossref  isi  scopus
    7. Dyatlov S., Zworski M., “Stochastic Stability of Pollicott-Ruelle Resonances”, Nonlinearity, 28:10 (2015), 3511–3533  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    9. Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001  crossref
    10. Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    11. A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Math. Notes, 88:2 (2010), 209–227  mathnet  crossref  crossref  mathscinet  isi  elib
    12. Kulikovskii AG, Lozovskii AV, Pashchenko NT, “Evolution of perturbations on a weakly inhomogeneous background”, Pmm Journal of Applied Mathematics and Mechanics, 71:5 (2007), 690–700  crossref  mathscinet  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:688
    Full-text PDF :324
    References:81
    First page:1
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025