Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 2, Pages 206–226
DOI: https://doi.org/10.4213/tmf2081
(Mi tmf2081)
 

This article is cited in 12 scientific papers (total in 12 papers)

Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients

S. V. Galtsev, A. I. Shafarevich

M. V. Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
References:
Abstract: We consider a non-self-adjoint Schrödinger operator describing the motion of a particle in a one-dimensional space with an analytic potential $iV(x)$ that is periodic with a real period $T$ and is purely imaginary on the real axis. We study the spectrum of this operator in the semiclassical limit and show that the points of its spectrum asymptotically belong to the so-called spectral graph. We construct the spectral graph and evaluate the asymptotic form of the spectrum. A Riemann surface of the particle energy-conservation equation can be constructed in the phase space. We show that both the spectral graph and the asymptotic form of the spectrum can be evaluated in terms of integrals of the $p\,dx$ form (where $x\in\mathbb C/T\mathbb Z$ and $p\in\mathbb C$ are the particle coordinate and momentum) taken along basis cycles on this Riemann surface. We use the technique of Stokes lines to construct the asymptotic form of the spectrum.
Keywords: spectrum, spectral graph, non-self-adjoint operator, Schrödinger operator, Stokes lines.
Received: 15.12.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 2, Pages 1049–1066
DOI: https://doi.org/10.1007/s11232-006-0100-y
Bibliographic databases:
Language: Russian
Citation: S. V. Galtsev, A. I. Shafarevich, “Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients”, TMF, 148:2 (2006), 206–226; Theoret. and Math. Phys., 148:2 (2006), 1049–1066
Citation in format AMSBIB
\Bibitem{GalSha06}
\by S.~V.~Galtsev, A.~I.~Shafarevich
\paper Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
\jour TMF
\yr 2006
\vol 148
\issue 2
\pages 206--226
\mathnet{http://mi.mathnet.ru/tmf2081}
\crossref{https://doi.org/10.4213/tmf2081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283694}
\zmath{https://zbmath.org/?q=an:1177.81043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1049G}
\elib{https://elibrary.ru/item.asp?id=9312050}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 2
\pages 1049--1066
\crossref{https://doi.org/10.1007/s11232-006-0100-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240375300004}
\elib{https://elibrary.ru/item.asp?id=13510177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747188929}
Linking options:
  • https://www.mathnet.ru/eng/tmf2081
  • https://doi.org/10.4213/tmf2081
  • https://www.mathnet.ru/eng/tmf/v148/i2/p206
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:639
    Full-text PDF :303
    References:71
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024