Abstract:
We consider a non-self-adjoint Schrödinger operator describing the motion
of a particle in a one-dimensional space with an analytic potential $iV(x)$
that is periodic with a real period $T$ and is purely imaginary on the real
axis. We study the spectrum of this operator in the semiclassical limit and
show that the points of its spectrum asymptotically belong to the so-called
spectral graph. We construct the spectral graph and evaluate the asymptotic
form of the spectrum. A Riemann surface of the particle energy-conservation
equation can be constructed in the phase space. We show that both the spectral
graph and the asymptotic form of the spectrum can be evaluated in
terms of integrals of the $p\,dx$ form (where $x\in\mathbb C/T\mathbb Z$ and
$p\in\mathbb C$ are the particle coordinate and momentum) taken along basis cycles on
this Riemann surface. We use the technique of Stokes lines to construct the asymptotic
form of the spectrum.
Citation:
S. V. Galtsev, A. I. Shafarevich, “Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schrödinger operator with periodic coefficients”, TMF, 148:2 (2006), 206–226; Theoret. and Math. Phys., 148:2 (2006), 1049–1066
\Bibitem{GalSha06}
\by S.~V.~Galtsev, A.~I.~Shafarevich
\paper Quantized Riemann surfaces and semiclassical spectral series for a non-self-adjoint Schr\"odinger operator with periodic coefficients
\jour TMF
\yr 2006
\vol 148
\issue 2
\pages 206--226
\mathnet{http://mi.mathnet.ru/tmf2081}
\crossref{https://doi.org/10.4213/tmf2081}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283694}
\zmath{https://zbmath.org/?q=an:1177.81043}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148.1049G}
\elib{https://elibrary.ru/item.asp?id=9312050}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 2
\pages 1049--1066
\crossref{https://doi.org/10.1007/s11232-006-0100-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240375300004}
\elib{https://elibrary.ru/item.asp?id=13510177}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33747188929}
Linking options:
https://www.mathnet.ru/eng/tmf2081
https://doi.org/10.4213/tmf2081
https://www.mathnet.ru/eng/tmf/v148/i2/p206
This publication is cited in the following 12 articles:
A.A. Arzhanov, S.A. Stepin, V.A. Titov, V.V. Fufaev, “Stokes Phenomenon and Spectral Locus in a Problem of Singular Perturbation Theory”, Russ. J. Math. Phys., 31:3 (2024), 351
Hitrik M., Sjostrand J., “Rational Invariant Tori and Band Edge Spectra For Non-Selfadjoint Operators”, J. Eur. Math. Soc., 20:2 (2018), 391–457
Fujiie S., Wittsten J., “Quantization Conditions of Eigenvalues For Semiclassical Zakharov-Shabat Systems on the Circle”, Discret. Contin. Dyn. Syst., 38:8 (2018), 3851–3873
Shafarevich A., “Quantization Conditions on Riemannian Surfaces and Spectral Series of Non-Selfadjoint Operators”, Formal and Analytic Solutions of Diff. Equations, Springer Proceedings in Mathematics & Statistics, 256, eds. Filipuk G., Lastra A., Michalik S., Springer, 2018, 177–187
Drouot A., “Stochastic Stability of Pollicott-Ruelle Resonances”, Commun. Math. Phys., 356:2 (2017), 357–396
D. V. Nekhaev, A. I. Shafarevich, “A quasiclassical limit of the spectrum of a Schrödinger operator with complex periodic potential”, Sb. Math., 208:10 (2017), 1535–1556
Dyatlov S., Zworski M., “Stochastic Stability of Pollicott-Ruelle Resonances”, Nonlinearity, 28:10 (2015), 3511–3533
A. I. Esina, A. I. Shafarevich, “Asymptotics of the Spectrum and Eigenfunctions of the Magnetic Induction Operator on a Compact Two-Dimensional Surface of Revolution”, Math. Notes, 95:3 (2014), 374–387
Tobias Gulden, Michael Janas, Alex Kamenev, “Riemann surface dynamics of periodic non-Hermitian Hamiltonians”, J. Phys. A: Math. Theor., 47:8 (2014), 085001
Esina A.I., Shafarevich A.I., “Analogs of Bohr-Sommerfeld-Maslov Quantization Conditions on Riemann Surfaces and Spectral Series of Nonself-Adjoint Operators”, Russ. J. Math. Phys., 20:2 (2013), 172–181
A. I. Esina, A. I. Shafarevich, “Quantization Conditions on Riemannian Surfaces and the Semiclassical Spectrum of the Schrödinger Operator with Complex Potential”, Math. Notes, 88:2 (2010), 209–227
Kulikovskii AG, Lozovskii AV, Pashchenko NT, “Evolution of perturbations on a weakly inhomogeneous background”, Pmm Journal of Applied Mathematics and Mechanics, 71:5 (2007), 690–700