Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 148, Number 1, Pages 112–125
DOI: https://doi.org/10.4213/tmf2062
(Mi tmf2062)
 

This article is cited in 2 scientific papers (total in 2 papers)

Quantum duality in quantum deformations

V. D. Lyakhovsky

Saint-Petersburg State University
Full-text PDF (459 kB) Citations (2)
References:
Abstract: In accordance with the quantum duality principle, the twisted algebra $U_{\mathcal F}(\mathfrak g)$ is equivalent to the quantum group $\mathrm{Fun}_{\mathrm{def}}( \mathfrak G^{\#})$ and has two preferred bases: one inherited from the universal enveloping algebra $U(\mathfrak g)$ and the other generated by coordinate functions of the dual Lie group $\mathfrak G^{\#}$. We show how the transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be explicitly obtained for any simple Lie algebra and a factorable chain $\mathcal F$ of extended Jordanian twists. In the algebra $\mathfrak g^{\#}$, we introduce a natural vector grading $\Gamma(\mathfrak g^{\#})$, compatible with the adjoint representation of the algebra. Passing to the dual-group coordinates allows essentially simplifying the costructure of the deformed Hopf algebra $U_{\mathcal F}(\mathfrak g)$, considered as a quantum group $\mathrm{Fun}_{\mathrm{def}}(\mathfrak G^{\#})$. The transformation $\mathfrak g\longrightarrow\mathfrak g^{\#}$ can be used to construct new solutions of the twist equations. We construct a parameterized family of extended Jordanian deformations $U_{\mathcal{EJ}}\bigl(\mathfrak{sl}(3)\bigr)$ and study it in terms of $\mathcal{SL}(3)^{\#}$; we find new realizations of the parabolic twist.
Keywords: Lie–Poisson structures, quantum deformations of symmetry, quantum duality.
Received: 30.10.2005
Revised: 24.11.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 148, Issue 1, Pages 968–979
DOI: https://doi.org/10.1007/s11232-006-0093-6
Bibliographic databases:
Language: Russian
Citation: V. D. Lyakhovsky, “Quantum duality in quantum deformations”, TMF, 148:1 (2006), 112–125; Theoret. and Math. Phys., 148:1 (2006), 968–979
Citation in format AMSBIB
\Bibitem{Lya06}
\by V.~D.~Lyakhovsky
\paper Quantum duality in quantum deformations
\jour TMF
\yr 2006
\vol 148
\issue 1
\pages 112--125
\mathnet{http://mi.mathnet.ru/tmf2062}
\crossref{https://doi.org/10.4213/tmf2062}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2283652}
\zmath{https://zbmath.org/?q=an:1177.81070}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...148..968L}
\elib{https://elibrary.ru/item.asp?id=9277365}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 148
\issue 1
\pages 968--979
\crossref{https://doi.org/10.1007/s11232-006-0093-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000240007800009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33746163893}
Linking options:
  • https://www.mathnet.ru/eng/tmf2062
  • https://doi.org/10.4213/tmf2062
  • https://www.mathnet.ru/eng/tmf/v148/i1/p112
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:414
    Full-text PDF :228
    References:59
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024