Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2003, Volume 135, Number 3, Pages 409–419
DOI: https://doi.org/10.4213/tmf205
(Mi tmf205)
 

This article is cited in 17 scientific papers (total in 17 papers)

Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test

S. Yu. Vernov

Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University
References:
Abstract: The generalized Hénon–Heiles system is considered. New special solutions for two nonintegrable cases are obtained using the Painlevé test. The solutions have the form of the Laurent series depending on three parameters. One parameter determines the singularity-point location, and the other two parameters determine the coefficients in the Laurent series. For certain values of these two parameters, the series becomes the Laurent series for the known exact solutions. It is established that such solutions do not exist in other nonintegrable cases.
Keywords: nonintegrable systems, Painlevé test, singularity analysis, polynomial potential, Hénon–Heiles system, Laurent series, elliptic functions.
English version:
Theoretical and Mathematical Physics, 2003, Volume 135, Issue 3, Pages 792–801
DOI: https://doi.org/10.1023/A:1024074702960
Bibliographic databases:
Language: Russian
Citation: S. Yu. Vernov, “Constructing Solutions for the Generalized Hénon–Heiles System Through the Painlevé Test”, TMF, 135:3 (2003), 409–419; Theoret. and Math. Phys., 135:3 (2003), 792–801
Citation in format AMSBIB
\Bibitem{Ver03}
\by S.~Yu.~Vernov
\paper Constructing Solutions for the Generalized H\'enon--Heiles System Through the Painlev\'e Test
\jour TMF
\yr 2003
\vol 135
\issue 3
\pages 409--419
\mathnet{http://mi.mathnet.ru/tmf205}
\crossref{https://doi.org/10.4213/tmf205}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1984445}
\zmath{https://zbmath.org/?q=an:1178.37054}
\transl
\jour Theoret. and Math. Phys.
\yr 2003
\vol 135
\issue 3
\pages 792--801
\crossref{https://doi.org/10.1023/A:1024074702960}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000184367300004}
Linking options:
  • https://www.mathnet.ru/eng/tmf205
  • https://doi.org/10.4213/tmf205
  • https://www.mathnet.ru/eng/tmf/v135/i3/p409
  • This publication is cited in the following 17 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:820
    Full-text PDF :310
    References:56
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024