Abstract:
We consider a nonlinear integral equation with infinitely many derivatives that appears when a system of interacting open and closed strings is investigated if the nonlocality in the closed string sector is neglected. We investigate the properties of this equation, construct an iterative method for solving it, and prove that the method converges.
Keywords:
string theory, nonlinear integral equation, iterative method.
Citation:
L. V. Zhukovskaya, “Iterative method for solving nonlinear integral equations describing rolling solutions in string theory”, TMF, 146:3 (2006), 402–409; Theoret. and Math. Phys., 146:3 (2006), 335–342
\Bibitem{Zhu06}
\by L.~V.~Zhukovskaya
\paper Iterative method for solving nonlinear integral equations describing rolling solutions in string theory
\jour TMF
\yr 2006
\vol 146
\issue 3
\pages 402--409
\mathnet{http://mi.mathnet.ru/tmf2043}
\crossref{https://doi.org/10.4213/tmf2043}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2253626}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..335J}
\elib{https://elibrary.ru/item.asp?id=9200319}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 3
\pages 335--342
\crossref{https://doi.org/10.1007/s11232-006-0043-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236533100004}
\elib{https://elibrary.ru/item.asp?id=13529583}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33644926969}
Linking options:
https://www.mathnet.ru/eng/tmf2043
https://doi.org/10.4213/tmf2043
https://www.mathnet.ru/eng/tmf/v146/i3/p402
This publication is cited in the following 53 articles:
A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “O konstruktivnoi razreshimosti odnogo klassa nelineinykh integralnykh uravnenii gammershteinovskogo tipa na vsei pryamoi”, Izv. vuzov. Matem., 2025, no. 3, 89–106
Kh. A. Khachatryan, H. S. Petrosyan, “On qualitative properties of the solution of a boundary value
problem for a system of nonlinear integral equations”, Theoret. and Math. Phys., 218:1 (2024), 145–162
A. Kh. Khachatryan, Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya, otsutstviya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi s operatorom tipa Gammershteina — Ctiltesa”, Tr. IMM UrO RAN, 30, no. 1, 2024, 249–269
Kh. A. Khachatryan, H. S. Petrosyan, “Asymptotic Behavior of the Solution for One Class of Nonlinear Integral Equations of Hammerstein Type on the Whole Axis”, J Math Sci, 282:2 (2024), 292
Zahra Keyshams, Khachatur A. Khachatryan, Monire Mikaeili Nia, “Existence and Uniqueness Theorems for One Class of Hammerstein-type Nonlinear Integral Equations”, Lobachevskii J Math, 45:8 (2024), 3580
A. S. Petrosyan, S. M. Andriyan, Kh. A. Khachatryan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa beskonechnoi sistemy nelineinykh dvumernykh uravnenii”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 24:4 (2024), 498–511
Kh. A. Khachatryan, H. S. Petrosyan, “Constructive study of the solvability of one class of nonlinear integral equations with a symmetric kernel”, Siberian Adv. Math., 34:4 (2024), 320–336
H. S. Petrosyan, Kh. A. Khachatryan, “Uniqueness of the Solution of a Class of Integral Equations with Sum-Difference. Kernel and with Convex Nonlinearity
on the Positive Half-Line”, Math. Notes, 113:4 (2023), 512–524
A. Kh. Khachatryan, Kh. A. Khachatryan, H. S. Petrosyan, “On nonlinear convolution-type integral equations in the theory
of p-adic strings”, Theoret. and Math. Phys., 216:1 (2023), 1068–1081
A.Kh. Khachatryan, Kh.A. Khachatryan, “ON QUALITATIVE PROPERTIES OF A SOLUTION OF ONE CLASS SINGULAR INTEGRAL EQUATIONS ON THE WHOLE LINE WITH ODD NONLINEARITY”, J Math Sci, 271:5 (2023), 597
Kh. A. Khachatryan, A. S. Petrosyan, “O razreshimosti odnogo klassa nelineinykh integralnykh uravnenii Gammershteina na poluosi”, Izv. Sarat. un-ta. Nov. ser. Ser.: Matematika. Mekhanika. Informatika, 22:2 (2022), 169–179
Kh. A. Khachatryan, A. S. Petrosyan, “Asimptoticheskoe povedenie resheniya dlya odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina na vsei pryamoi”, SMFN, 68, no. 2, Rossiiskii universitet druzhby narodov, M., 2022, 376–391
Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022) (to appear)
Kh. A. Khachatryan, A. S. Petrosyan, “Voprosy suschestvovaniya i edinstvennosti resheniya odnogo klassa nelineinykh integralnykh uravnenii na vsei pryamoi”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 26:3 (2022), 446–479
Kh. A. Khachatryan, H. S. Petrosyan, S. M. Andriyan, “On the solubility of a class of two-dimensional integral equations on a quarter plane with monotone nonlinearity”, Bul. Acad. Ştiinţe Repub. Mold. Mat., 2022, no. 2, 19–38
A. Kh. Khachatryan, Kh. A. Khachatryan, “Ob odnoi sisteme integralnykh uravnenii na vsei pryamoi s vypukloi i monotonnoi nelineinostyu”, Proceedings of NAS RA. Mathematics, 2022, 65
A. Kh. Khachatryan, Kh. A. Khachatryan, “A System of Integral Equations on the Entire Axis with Convex and Monotone Nonlinearity”, J. Contemp. Mathemat. Anal., 57:5 (2022), 311
Kh. A. Khachatryan, H. S. Petrosyan, “Solvability of a certain system of singular integral equations with convex nonlinearity on the positive half-line”, Russian Math. (Iz. VUZ), 65:1 (2021), 27–46
Kh. A. Khachatryan, H. S. Petrosyan, “Alternating bounded solutions of a class of nonlinear two-dimensional convolution-type integral equations”, Trans. Moscow Math. Soc., 82 (2021), 259–271
Kh. A. Khachatryan, A. S. Petrosyan, “O postroenii summiruemogo resheniya odnogo klassa nelineinykh integralnykh uravnenii tipa Gammershteina - Nemytskogo na vsei pryamoi”, Tr. IMM UrO RAN, 26, no. 2, 2020, 278–287