Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 2, Pages 340–352
DOI: https://doi.org/10.4213/tmf2039
(Mi tmf2039)
 

This article is cited in 2 scientific papers (total in 2 papers)

General Theory of Acoustic Wave Propagation in Liquids and Gases

G. A. Martynov

Institute of Physical Chemistry, Russian Academy of Sciences
Full-text PDF (178 kB) Citations (2)
References:
Abstract: We study the propagation of small-amplitude acoustic waves in liquids and gases and use the hydrodynamic equations to obtain an exact dispersion equation. This equation in dimensionless variables contains only two material constants p and q. We solve the dispersion equation, obtaining an exact solution that holds for all values of the parameters and all frequencies up to hypersonic, and thus analytically establish exactly how the speed of sound c, the wave vector k, and the damping factor x depend on the frequency ω and the dimensionless material constants p and q. Studying the behavior of the solution in the sonic and ultrasonic frequency bands for ω<107 с1 results in an expression for the damping factor, which differs from the Kirchhoff formula. The speed of sound c and the wave vector k are shown to have finite nonzero values for all hypersonic frequencies. At the same time, there exists a certain maximum frequency value, ωmax10111012 с1, at which the damping factor x is zero. This frequency determines the boundary of the applicability domain for the hydrodynamic equations.
Keywords: hydrodynamics, sound, dispersion equation, relaxation theory.
Received: 17.01.2005
Revised: 18.04.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 2, Pages 285–294
DOI: https://doi.org/10.1007/s11232-006-0024-6
Bibliographic databases:
Language: Russian
Citation: G. A. Martynov, “General Theory of Acoustic Wave Propagation in Liquids and Gases”, TMF, 146:2 (2006), 340–352; Theoret. and Math. Phys., 146:2 (2006), 285–294
Citation in format AMSBIB
\Bibitem{Mar06}
\by G.~A.~Martynov
\paper General Theory of Acoustic Wave Propagation in Liquids and Gases
\jour TMF
\yr 2006
\vol 146
\issue 2
\pages 340--352
\mathnet{http://mi.mathnet.ru/tmf2039}
\crossref{https://doi.org/10.4213/tmf2039}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243134}
\zmath{https://zbmath.org/?q=an:1177.76377}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..285M}
\elib{https://elibrary.ru/item.asp?id=9213654}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 2
\pages 285--294
\crossref{https://doi.org/10.1007/s11232-006-0024-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236080100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544459405}
Linking options:
  • https://www.mathnet.ru/eng/tmf2039
  • https://doi.org/10.4213/tmf2039
  • https://www.mathnet.ru/eng/tmf/v146/i2/p340
  • This publication is cited in the following 2 articles:
    1. Li Zh., Han Zh., Jian X., Shao W., Jiao Ya., Cui Ya., “Pulse-Echo Acoustic Properties Evaluation Method Using High-Frequency Transducer”, Meas. Sci. Technol., 31:12 (2020), 125011  crossref  isi
    2. O. P. Nikolaeva, “Radial distribution function and the speed of sound in dense gases and liquids”, Moscow Univ. Phys., 62:3 (2007), 143  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:2117
    Full-text PDF :1066
    References:124
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025