Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 146, Number 2, Pages 267–298
DOI: https://doi.org/10.4213/tmf2035
(Mi tmf2035)
 

This article is cited in 5 scientific papers (total in 5 papers)

Instanton in the Field of a Pointlike Source of a Euclidean Non-Abelian Field

G. M. Zinovjeva, S. V. Molodtsovbc

a N. N. Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
c Joint Institute for Nuclear Research
Full-text PDF (369 kB) Citations (5)
References:
Abstract: We consider the behavior of an (anti)instanton in the field of a pointlike source of a Euclidean non-Abelian field and investigate (anti)instanton deformations described by variations of its characteristic parameters. We formulate the variational problem of seeking the corresponding “crumpled” topological configurations and solve it algebraically using the Ritz method (of multipole decomposition of deformation fields). We investigate the domain of parameters specific for the instanton liquid model. We propose a simple method of taking contributions of such configurations in the functional integral into account approximately. In the framework of superposition analysis, we obtain an estimate for the mean energy of the source in the instanton liquid, and the estimate increases linearly with distance. In the case of a dipole in the color-singlet state, the energy is a linear function of the distance between the sources with thesources with the “strength” coefficient agreeing well with the known model and lattice estimates.
Keywords: instanton, external field, approximate solution, deformations.
Received: 25.03.2005
Revised: 04.06.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 146, Issue 2, Pages 221–247
DOI: https://doi.org/10.1007/s11232-006-0020-x
Bibliographic databases:
Language: Russian
Citation: G. M. Zinovjev, S. V. Molodtsov, “Instanton in the Field of a Pointlike Source of a Euclidean Non-Abelian Field”, TMF, 146:2 (2006), 267–298; Theoret. and Math. Phys., 146:2 (2006), 221–247
Citation in format AMSBIB
\Bibitem{ZinMol06}
\by G.~M.~Zinovjev, S.~V.~Molodtsov
\paper Instanton in the Field of a~Pointlike Source of a~Euclidean Non-Abelian Field
\jour TMF
\yr 2006
\vol 146
\issue 2
\pages 267--298
\mathnet{http://mi.mathnet.ru/tmf2035}
\crossref{https://doi.org/10.4213/tmf2035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243130}
\zmath{https://zbmath.org/?q=an:1177.81103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..221Z}
\elib{https://elibrary.ru/item.asp?id=9213650}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 2
\pages 221--247
\crossref{https://doi.org/10.1007/s11232-006-0020-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236080100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544460231}
Linking options:
  • https://www.mathnet.ru/eng/tmf2035
  • https://doi.org/10.4213/tmf2035
  • https://www.mathnet.ru/eng/tmf/v146/i2/p267
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:568
    Full-text PDF :264
    References:76
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024