Abstract:
We consider the behavior of an (anti)instanton in the field of a pointlike source of a Euclidean non-Abelian field and investigate (anti)instanton deformations described by variations of its characteristic parameters. We formulate the variational problem of seeking the corresponding
“crumpled” topological configurations and solve it algebraically using the Ritz method (of multipole decomposition of deformation fields). We investigate the domain of parameters specific for the instanton liquid model. We propose a simple method of taking contributions of such configurations in the functional integral into account approximately. In the framework of superposition analysis, we obtain an estimate for the mean energy of the source in the instanton liquid, and the estimate increases linearly with distance. In the case of a dipole in the color-singlet state, the energy is a linear function of the distance between the sources with thesources with the “strength” coefficient agreeing well with the known model and lattice estimates.
Citation:
G. M. Zinovjev, S. V. Molodtsov, “Instanton in the Field of a Pointlike Source of a Euclidean Non-Abelian Field”, TMF, 146:2 (2006), 267–298; Theoret. and Math. Phys., 146:2 (2006), 221–247
\Bibitem{ZinMol06}
\by G.~M.~Zinovjev, S.~V.~Molodtsov
\paper Instanton in the Field of a~Pointlike Source of a~Euclidean Non-Abelian Field
\jour TMF
\yr 2006
\vol 146
\issue 2
\pages 267--298
\mathnet{http://mi.mathnet.ru/tmf2035}
\crossref{https://doi.org/10.4213/tmf2035}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2243130}
\zmath{https://zbmath.org/?q=an:1177.81103}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...146..221Z}
\elib{https://elibrary.ru/item.asp?id=9213650}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 146
\issue 2
\pages 221--247
\crossref{https://doi.org/10.1007/s11232-006-0020-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000236080100005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-32544460231}
Linking options:
https://www.mathnet.ru/eng/tmf2035
https://doi.org/10.4213/tmf2035
https://www.mathnet.ru/eng/tmf/v146/i2/p267
This publication is cited in the following 5 articles:
V. Voronyuk, V. V. Goloviznin, G. M. Zinovjev, W. Cassing, S. V. Molodtsov, A. M. Snigirev, V. D. Toneev, “Classical gluon fields and collective dynamics of color-charge systems”, Phys. Atom. Nuclei, 78:2 (2015), 312
W. Cassing, V. V. Goloviznin, S. V. Molodtsov, A. M. Snigirev, V. D. Toneev, V. Voronyuk, G. M. Zinovjev, “Non-Abelian color fields from relativistic color charge configurations in the classical limit”, Phys. Rev. C, 88:6 (2013)
Zinovjev GM, Molodtsov SV, Siemiarczuk T, et al., “Sigma meson and phonon-like excitations of the instanton vacuum”, Physics of Atomic Nuclei, 71:2 (2008), 313–320
Zinovjev GM, Molodtsov SV, “Screening of a color field in an instanton liquid”, Physics of Atomic Nuclei, 70:6 (2007), 1136–1145