Abstract:
We give an explicit analytic expression for the SS-matrix in the case of an arbitrary central interaction inside a sphere of finite radius with a Yukawa-potential tail at large distances. The method uses the completeness of the wave functions outside the finite sphere and also the unitarity and the symmetry conditions for the SS-matrix.
Citation:
M. Baldo, V. S. Ol'khovskii, “Analytic properties of the SS-matrix for interactions with Yukawa-potential tails”, TMF, 147:1 (2006), 113–128; Theoret. and Math. Phys., 147:1 (2006), 541–553
\Bibitem{BalOlk06}
\by M.~Baldo, V.~S.~Ol'khovskii
\paper Analytic properties of the $S$-matrix for interactions with Yukawa-potential tails
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 113--128
\mathnet{http://mi.mathnet.ru/tmf2027}
\crossref{https://doi.org/10.4213/tmf2027}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254719}
\zmath{https://zbmath.org/?q=an:1177.81136}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..541B}
\elib{https://elibrary.ru/item.asp?id=9200337}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 541--553
\crossref{https://doi.org/10.1007/s11232-006-0061-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645961001}
Linking options:
https://www.mathnet.ru/eng/tmf2027
https://doi.org/10.4213/tmf2027
https://www.mathnet.ru/eng/tmf/v147/i1/p113
This publication is cited in the following 2 articles:
Maslov V.P., “Table of Stable Chemical Elements Based on the “Intensity-Compressibility Factor” Diagram and on Mean Square Fluctuations of Energy and Time”, Russ. J. Math. Phys., 26:3 (2019), 352–367
Olkhovsky V.S., “On the analytic properties of the S-matrix for the unknown interactions surrounded by centrifugal and rapidly decreasing potentials”, Central European Journal of Physics, 9:1 (2011), 13–44