Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2006, Volume 147, Number 1, Pages 64–72
DOI: https://doi.org/10.4213/tmf2023
(Mi tmf2023)
 

This article is cited in 9 scientific papers (total in 9 papers)

One method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluid

A. V. Yurova, A. A. Yurovab

a Immanuel Kant State University of Russia
b Kaliningrad State University
Full-text PDF (224 kB) Citations (9)
References:
Abstract: We propose a simple algebraic method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluid. The problem reduces to consecutively solving three linear partial differential equations for a nonviscous fluid and to solving three linear partial differential equations and one first-order ordinary differential equation for a viscous fluid.
Keywords: two-dimensional incompressible fluid, exact solutions.
Received: 12.07.2005
Revised: 21.10.2005
English version:
Theoretical and Mathematical Physics, 2006, Volume 147, Issue 1, Pages 501–508
DOI: https://doi.org/10.1007/s11232-006-0057-x
Bibliographic databases:
Language: Russian
Citation: A. V. Yurov, A. A. Yurova, “One method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluid”, TMF, 147:1 (2006), 64–72; Theoret. and Math. Phys., 147:1 (2006), 501–508
Citation in format AMSBIB
\Bibitem{YurYur06}
\by A.~V.~Yurov, A.~A.~Yurova
\paper One method for constructing exact solutions of equations of two-dimensional hydrodynamics of an incompressible fluid
\jour TMF
\yr 2006
\vol 147
\issue 1
\pages 64--72
\mathnet{http://mi.mathnet.ru/tmf2023}
\crossref{https://doi.org/10.4213/tmf2023}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2254716}
\zmath{https://zbmath.org/?q=an:1177.76094}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2006TMP...147..501Y}
\elib{https://elibrary.ru/item.asp?id=9200333}
\transl
\jour Theoret. and Math. Phys.
\yr 2006
\vol 147
\issue 1
\pages 501--508
\crossref{https://doi.org/10.1007/s11232-006-0057-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000237757900005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-33645970211}
Linking options:
  • https://www.mathnet.ru/eng/tmf2023
  • https://doi.org/10.4213/tmf2023
  • https://www.mathnet.ru/eng/tmf/v147/i1/p64
  • This publication is cited in the following 9 articles:
    1. Alexei Cheviakov, Peng Zhao, CMS/CAIMS Books in Mathematics, 10, Analytical Properties of Nonlinear Partial Differential Equations, 2024, 79  crossref
    2. Oleg I. Morozov, “Extensions of the symmetry algebra and Lax representations for the two-dimensional Euler equation”, Journal of Geometry and Physics, 202 (2024), 105233  crossref
    3. S. Artychev, “Generalization of the Landau submerged jet solution”, Theoret. and Math. Phys., 186:2 (2016), 148–155  mathnet  crossref  crossref  mathscinet  isi  elib
    4. S.G. Artyshev, “The description of several plane rotating flows of an incompressible fluid using cylindrical functions”, Journal of Applied Mathematics and Mechanics, 79:2 (2015), 159  crossref
    5. Artyshev S.G., “Ob odnom klasse tochnykh reshenii uravnenii dvumernoi gidrodinamiki neszhimaemoi zhidkosti”, Vestnik natsionalnogo issledovatelskogo yadernogo universiteta MIFI, 2:1 (2013), 47–47  elib
    6. Yurova A.A., “Dinamika lokalizovannogo impulsa, opisyvaemogo uravneniem Devi–Styuartsona II”, Vestnik Baltiiskogo federalnogo universiteta im. I. Kanta, 2011, no. 5, 12–17  elib
    7. Hu Xiao-Rui, Chen Yong, Huang Fei, “Symmetry analysis and explicit solutions of the (3+1)-dimensional baroclinic potential vorticity equation”, Chinese Physics B, 19:8 (2010), 080203  crossref  mathscinet  isi  scopus  scopus
    8. Lou S.Y., Jia M., Huang F., Tang X.Y., “Backlund transformations, solitary waves, conoid waves and Bessel waves of the (2+1)-dimensional Euler equation”, Internat. J. Theoret. Phys., 46:8 (2007), 2082–2095  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus  scopus
    9. Lou S.Y., Jia M., Tang X.Y., Huang F., “Vortices, circumfluence, symmetry groups, and Darboux transformations of the (2+1)-dimensional Euler equation”, Phys. Rev. E (3), 75:5 (2007), 056318, 11 pp.  crossref  mathscinet  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:652
    Full-text PDF :351
    References:96
    First page:2
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025